Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Lumière | Lumière -- Propagation | Dessins et plans | Lumière, Théorie ondulatoire de la | Photographie | Ondes | Ondes -- Propagation | Doppler, Effet | Dix-neuvième siècle | Gravure | Physique | Couleurs | Lumière solaire | Ombres | Éclairage artificiel | Optique | Savants allemands | Savants français | Interférence (optique) | Sources de lumière | ...
Absorption entre niveaux atomiques. Source : http://data.abuledu.org/URI/50b3d036-absorption-entre-niveaux-atomiques

Absorption entre niveaux atomiques

Processus d'interaction entre la lumière et la matière : illustration du phénomène d'absorption entre les niveaux atomiques : Le photon d'énergie h u fait passer l'atome de son état fondamental 1 vers l'état excité 2. Lorsqu'il est éclairé par un rayonnement électromagnétique (la lumière), un atome peut passer d'un état n à un état n' > n, en prélevant l'énergie correspondante sur le rayonnement. Ce processus est résonnant : la fréquence du rayonnement omega doit être proche d'une fréquence de Bohr atomique pour qu'il puisse se produire. Les fréquences de Bohr atomiques sont définies par hbaromega_{nn'}=(E_{n'}-E_n), où E_{n'} > E_n sont les énergies des états n' et n. On peut interpréter ce processus comme l'absorption d'un photon du rayonnement (d'énergie hbaromega=h u) faisant passer l'atome du niveau d'énergie E_n vers le niveau d'énergie E_{n'}. La condition de résonance correspond alors à la conservation de l'énergie.

Ampoule allumée. Source : http://data.abuledu.org/URI/540780d8-ampoule-allumee

Ampoule allumée

Ampoule allumée.

Appareil de Fizeau. Source : http://data.abuledu.org/URI/50a7930f-appareil-de-fizeau

Appareil de Fizeau

L'expérience de Fizeau. L est la lumière, S1 le 1e miroir, Z la roue dentée, S2 le 2e miroir, B l'observateur. Le principe de l'expérience est le suivant : la roue dentée est mise en rotation, la source lumineuse est réfléchie par un premier miroir semi-transparent, franchit une échancrure de la roue, parcourt la distance d, se réfléchit sur un miroir lointain, parcourt à nouveau la distance d, et arrive à nouveau sur la roue dentée. Mais celle-ci, entre-temps, a légèrement tourné : la lumière réfléchie peut tomber sur une dent et donc être bloquée, ou passer par une échancrure suivante. En mesurant le temps t qu'il a fallu à la roue pour devenir bloquante, à partir de sa vitesse de rotation (mesurée par l'appareil), et de la distance parcourue (également connue : 2d), on calcule la vitesse de la lumière c : c = 2d/t.

Balise lumineuse en mer. Source : http://data.abuledu.org/URI/53b99dd2-balise-lumineuse-en-mer

Balise lumineuse en mer

Balise lumineuse en mer.

Banc sur boules lumineuses. Source : http://data.abuledu.org/URI/5386ff37-banc-sur-boules-lumineuses

Banc sur boules lumineuses

Banc sur boules lumineuses, par l'artiste autrichien Manfred Kielnhofer.

Bougeoirs avec bougies allumées. Source : http://data.abuledu.org/URI/503a182d-bougeoirs-avec-bougies-allumees

Bougeoirs avec bougies allumées

Photo d'un étalage de bougeoirs et de bougies la plupart allumées, avec prix de vente.

Christian Huygens. Source : http://data.abuledu.org/URI/50a58dd1-christian-huygens

Christian Huygens

Portrait relief de Christian Huygens (1629-1695) par Jean-Jacques Clerion (1637-1714) : mathématicien, astronome et physicien néerlandais, connu pour ses arguments selon lesquels la lumière est composée d'ondes. En réponse aux articles d'Isaac Newton sur la lumière, en 1672, il se lance dans l'étude de la nature de la lumière, à la suite de savants tels que Rasmus Bartholin. Il découvre en 1677, grâce aux propriétés des cristaux et de leur coupe géométrique, en particulier grâce au spath d'Islande, que les lois de réflexion et de réfraction de Snell-Descartes sont conservées si l'on suppose une propagation de la lumière sous la forme d'ondes. En outre, la double réfraction du spath d'Islande peut être expliquée, ce qui n'est pas le cas avec une théorie corpusculaire. La théorie ondulatoire, présentée en 1678 sera publiée en 1690 dans son "Traité de la Lumière".

Diffraction à travers un voilage. Source : http://data.abuledu.org/URI/50a8d78e-diffraction-a-travers-un-voilage

Diffraction à travers un voilage

Lorsqu'une source de lumière quasiment ponctuelle est observée à travers un rideau ou un voilage, on peut voir une figure de diffraction telle celle-ci : zoom vers lumière extérieure allumée de jour (lobes secondaires presque indiscernables). Elle résulte de la diffraction de la lumière par le rideau, dont le tissu constitue tout un ensemble d'ouvertures carrées. La mesure de l'angle entre la tache centrale et sa voisine permet d'obtenir le pas du rideau. Les irisations des taches proviennent du fait que chaque longueur d'onde construit sa propre figure de diffraction, légèrement différente de celle d'une longueur d'onde voisine. Les endroits où les figures coïncident sont blancs (en particulier la tache centrale), les autres sont colorés. On constate que la répartition des couleurs est logique car les maxima du sinus cardinal sont obtenus régulièrement (tous les Pi/2 et x, distance d'un point au centre de la tâche, est proportionnel à lambda.

Diffraction par ouverture rectangulaire. Source : http://data.abuledu.org/URI/50a8d458-diffraction-par-ouverture-rectangulaire

Diffraction par ouverture rectangulaire

Figure de diffraction : notations utilisées pour une ouverture rectangulaire. Une ouverture rectangulaire de côtés a et b correspond à une transmission t(X, Y) définie par : t(X,Y) = 1 si |X|<a/2 et |Y|<b/2 ; t(X,Y) = 0 sinon.

Diffusion de Raleigh et de Mie. Source : http://data.abuledu.org/URI/50dd7afc-diffusion-de-raleigh-et-de-mie

Diffusion de Raleigh et de Mie

Illustration de la diffusion de Raleigh et de Mie sur une particule sphérique. De gauche à droite : intensité de la diffusion Rayleigh, de la diffusion Mie pour de petites particules et de la diffusion Mie pour de grosses particules, en fonction de la direction. L'onde incidente arrive par la gauche. La diffusion par des très petites particules, telles que des molécules, de dimensions inférieures au dixième de la longueur d'onde considérée, est un cas limite appelé diffusion Rayleigh. Pour les particules plus grosses que cette longueur d'onde, on doit prendre en compte la diffusion de Mie dans son intégralité : elle explique dans quelles directions la diffusion est la plus intense, on obtient ainsi un « patron de réémission » qui ressemble à celui des lobes d'émission d'une antenne, avec, dans le cas de grosses particules, un lobe plus intense dans la direction opposée à celle d'où provient l'onde incidente. La diffusion de Mie n'est pas fortement dépendante de la longueur d'onde utilisée comme c'est le cas dans celle de Rayleigh. Elle produit donc une lumière presque blanche lorsque le Soleil illumine de grosses particules dans l'air : c'est cette dispersion qui donne la couleur blanc laiteux à la brume et au brouillard. La couleur du ciel, pendant toute la durée du jour, est provoquée par diffusions Rayleigh et Mie de la lumière solaire dans l'atmosphère. La diffusion Rayleigh provoque les teintes bleues, violettes et vertes du ciel. Les couleurs caractéristiques du lever de soleil sont causées par diffusion de Mie de sa lumière par les particules de poussière, suie, fumée et cendre en suspension dans l'atmosphère : lorsque le Soleil est près de l'horizon, sa lumière traverse une plus grande épaisseur d'atmosphère, elle est donc plus susceptible d'être diffusée.

Dispersion de la lumière à travers un prisme. Source : http://data.abuledu.org/URI/52c86487-dispersion-de-la-lumiere-a-travers-un-prisme

Dispersion de la lumière à travers un prisme

Dispersion de la lumière d'une lampe à vapeur de mercure par un prisme de verre flint. Le verre flint, ou flint glass en anglais, de « flint » qui signifie silex en anglais, est un type de verre avec un haut indice de réfraction et un nombre d'Abbe faible. L'indice de réfraction des flints varie entre 1,5 et 2,0 selon leur composition et on les distingue des autres verres d'oxydes par leur nombre d'Abbe inférieur à 50, ce sont donc des verres très dispersifs c'est-à-dire qu'ils dévient très différemment la lumière selon la longueur d'onde de celle-ci. Le verre flint contient dans sa formule d'origine, une partie d'oxyde de plomb (II), depuis les travaux de recherche sur les formules de verre opérées par Otto Schott et Ernst Abbe, on peut adjoindre à la pâte d'un verre flint du lanthane, du titane, du baryum, etc. Le verre flint est très utilisé en cristallerie d'art pour sa brillance, l'indice de réfraction fort provoquant une plus grande proportion de réflexions internes. Source : http://fr.wikipedia.org/wiki/Verre_flint.

Dispersion de la lumière au passage d'un dioptre. Source : http://data.abuledu.org/URI/50a821f2-dispersion-de-la-lumiere-au-passage-d-un-dioptre

Dispersion de la lumière au passage d'un dioptre

Dispersion de la lumière blanche au passage d'un prisme. La dispersion, en mécanique ondulatoire, est le phénomène affectant une onde dans un milieu dispersif, c'est-à-dire dans lequel les différentes fréquences constituant l'onde ne se propagent pas à la même vitesse. On rencontre ce phénomène pour tous types d'ondes, comme la lumière, le son ou les vagues. Les arcs-en-ciel sont une manifestation de la dispersion induite par réfraction des rayons du soleil par les gouttes de pluie.

Disque chromatique. Source : http://data.abuledu.org/URI/50a900ed-disque-chromatique

Disque chromatique

Disque chromatique avec les longueurs d'ondes associées.

Domaines du spectre électromagnétique. Source : http://data.abuledu.org/URI/50a8f925-domaines-du-spectre-electromagnetique

Domaines du spectre électromagnétique

Régions approximatives en fréquence et en longueur d'onde du spectre électromagnétique. Le spectre électromagnétique est la décomposition du rayonnement électromagnétique selon ses différentes composantes en termes de fréquence (ou période), d'énergie des photons ou encore de longueur d’onde associée, les quatre grandeurs u (fréquence), T (période), E (énergie) et lambda (longueur d’onde) étant liées deux à deux par : la constante de Planck h, (approx. 6,626069×10-34 J⋅s ≈ 4,13567 feV/Hz) et la vitesse de la lumière c, (exactement 299 792 458 m/s).

Effet Doppler. Source : http://data.abuledu.org/URI/50a77081-effet-doppler

Effet Doppler

Schéma de l'éffet Doppler mesurant le décalage de fréquence d’une onde acoustique ou électromagnétique entre la mesure à l'émission (1) et la mesure à la réception (2) lorsque la distance entre l'émetteur (A) et le récepteur (B) varie au cours du temps.

Effet Doppler. Source : http://data.abuledu.org/URI/50a77299-effet-doppler

Effet Doppler

Effet Doppler : ondes émies par une source se déplaçant de la droite vers la gauche. La fréquence est plus élevée à gauche (à l'avant de la source) qu'à droite.

Effet Doppler-Fizeau. Source : http://data.abuledu.org/URI/50a76f10-effet-doppler-fizeau

Effet Doppler-Fizeau

Schéma représentant les ondes émises par une source se déplaçant de la droite vers la gauche. La fréquence est plus élevée à gauche (à l'avant de la source) qu'à droite. L'effet Doppler ou effet Doppler-Fizeau est le décalage de fréquence d’une onde acoustique ou électromagnétique entre la mesure à l'émission et la mesure à la réception lorsque la distance entre l'émetteur et le récepteur varie au cours du temps. Si on désigne de façon générale ce phénomène physique sous le nom d'effet Doppler, on réserve le terme d'« effet Doppler-Fizeau » aux ondes lumineuses.

Effet Sagnac. Source : http://data.abuledu.org/URI/518fabf2-effet-sagnac

Effet Sagnac

Les signaux lumineux partant dans des sens opposés parcourent des distances différentes avant de rencontrer à nouveau l’émetteur qui tourne avec le disque. On appelle « effet Sagnac » le décalage temporel de la réception de signaux lumineux « tournant en sens inverse » quand ils sont émis par un émetteur-récepteur fixé sur un disque tournant. En effet, si un émetteur placé sur un disque en rotation envoie deux signaux lumineux contraints de suivre la circonférence du disque, chacun dans un sens, les deux signaux reviennent à l'émetteur après un tour complet mais avec un léger décalage temporel qui dépend de la vitesse de rotation du disque.

Entre Terre et Soleil. Source : http://data.abuledu.org/URI/50aa951b-entre-terre-et-soleil

Entre Terre et Soleil

Illustration légendée en anglais, à l'échelle, de la distance séparant la Terre et le Soleil (Sun = Soleil ; Earth = Terre ; Moon = Lune) soit 150 000 000 km. La lumière solaire met environ 8 minutes et 19 secondes à atteindre la Terre.

Expérience des Fentes de Young. Source : http://data.abuledu.org/URI/50a59b21-experience-des-fentes-de-young

Expérience des Fentes de Young

Expérience de Thomas Young (1773-1829) en optique, dans laquelle il mit en évidence et interpréta le phénomène d’interférences lumineuses. L'apport de Young au domaine de l'optique est sans doute son plus grand motif de célébrité, en particulier sa célèbre expérience de la double fente. En 1801, il fait passer un faisceau de lumière à travers deux fentes parallèles, et le projette sur un écran. La lumière est diffractée au passage des fentes et produit sur l'écran des franges d'interférence, c'est-à-dire une alternance de bandes éclairées et non-éclairées. Young en déduit la nature ondulatoire de la lumière.

Faisceau électronique. Source : http://data.abuledu.org/URI/50a8ec9c-faisceau-electronique

Faisceau électronique

Schéma des rayons dans le faisceau électronique du MET : rayon incident, échantillon, lentilles, figure de diffraction, image.

Fentes de Young. Source : http://data.abuledu.org/URI/50a598ed-fentes-de-young

Fentes de Young

Simulation des interférences obtenues après les fentes de Young : les deux points en bas de l'image sont les sources de lumière. Les fentes de Young (ou interférences de Young) désignent en physique l'expérience qui consiste à faire interférer deux faisceaux de lumière issus d'une même source, en les faisant passer par deux petits trous percés dans un plan opaque. Cette expérience fut réalisée pour la première fois par Thomas Young en 1801 et a permis de comprendre le comportement et la nature de la lumière. Sur un écran disposé en face des fentes de Young, on observe un motif de diffraction qui est une zone où s'alternent des franges sombres et illuminées. Cette expérience permet alors de mettre en évidence la nature ondulatoire de la lumière.

Fentes de Young. Source : http://data.abuledu.org/URI/50a7bb9b-fentes-de-young

Fentes de Young

Schéma de l'expérience de double interférence des fentes de Young.

Front d'onde. Source : http://data.abuledu.org/URI/50a59de2-front-d-onde

Front d'onde

Les fronts d'onde d'une onde plane sont des plans. Le front d'onde est une surface d'égale phase d'une onde, c'est-à-dire que ces points ont mis le même temps de parcours depuis la source. Le front d'onde évolue dans l'espace à la vitesse de propagation de l'onde dans une direction normale à la surface. On peut distinguer deux principaux types de fronts d'onde : les plans et les sphères. Les premiers sont caractéristiques d'une onde plane, et les seconds d'une onde sphérique.

Holographie électronique. Source : http://data.abuledu.org/URI/50a8dc5f-holographie-electronique

Holographie électronique

Shéma de l'holographie électronique : 1-source d'electrons ; 2-échantillon ; 3-onde image ; 4-onde de référence ; 5-biprisme de Möllenstedt ; 6-hologramme. La source d'électrons (1) forme le faisceau, dont une partie traverse l'échantillon (2) et constitue ainsi l'onde image (3). L'autre partie du faisceau électronique sert d'onde de référence (4), qui va ensuite interférer avec l'onde image pour former l'hologramme (6), grâce au biprisme de Möllenstedt (5). L'holographie électronique imaginée par Dennis Gabor en 1949 est une technique d'imagerie qui permet d'enregistrer les figures d'interférences (hologramme) formées par un objet. Cette technique permet alors de recontruire les fronts d'ondes constituant le faisceau électronique, et d'en déduire la phase. La réalisation pratique consiste à enregistrer l'hologramme entre l'onde de référence Psi_0 et l'onde image de l'échantillon Psi_r, c'est-à-dire l'onde qui a traversé l'objet.

L'appareil de Fizeau-Mascart. Source : http://data.abuledu.org/URI/50a79595-l-appareil-de-fizeau-mascart

L'appareil de Fizeau-Mascart

Dessin de l'appareil ayant servi à l'expérience de Fizeau-Mascart en 1851. Fizeau avait réalisé son expérience en 1849, entre Montmartre et le mont Valérien à Suresnes, ces deux points étant distants d'exactement 8 633 m. La lumière de la lampe passe dans la première lunette et se réfléchit sur un miroir semi-transparent incliné à 45°. Elle passe alors à travers la roue dentée, par une des échancrures, puis part dans l'axe de la seconde lunette située à 8 633 m de là, sur la butte Montmartre. Cette 2e lunette est munie d’un miroir lui permettant de renvoyer la lumière de là où elle vient, à Suresnes. La lumière est alors récupérée par la première lunette, passe à nouveau à travers la roue dentée, par une des échancrures, traverse le miroir semi-transparent, puis est observée par Fizeau au moyen d'une lunette. En 1850, Fizeau et Foucault reprennent l'expérience dans l'eau. L'année suivante, Foucault mesure la célérité c' de la lumière dans de l'eau en translation à la vitesse u et trouve c' = frac{c}{n} + u (1 - frac{1}{n^{2}}) où n est l'indice de réfraction de l'eau. La relativité restreinte donnera en 1905 une explication complète de ce résultat.

L'effet Doppler (rouge et bleu). Source : http://data.abuledu.org/URI/50a78be5-l-effet-doppler-rouge-et-bleu-

L'effet Doppler (rouge et bleu)

Décalage de la propagation du bleu et du rouge, par effet Doppler.

L'optique de Képler. Source : http://data.abuledu.org/URI/50b0ac37-l-optique-de-kepler

L'optique de Képler

Planche de Johannes Kepler "Ad Vitellionem Paralipomena, quibus Astronomiae Pars Optica" (1604), illustrant la structure de l'oeil. Dès 1603, il parcourt divers ouvrages sur le sujet dont celui de l’Arabe Alhazen. Kepler rassemble les connaissances de l’époque dans son livre "Astronomia pars Optica", publié en 1604. Il y explique les principes fondamentaux de l’optique moderne comme la nature de la lumière (rayons, intensité variant avec la surface, vitesse infinie, etc.), la chambre obscure, les miroirs (plans et courbes), les lentilles et la réfraction dont il donne la loi i = n×r, qui est correcte pour de petits angles (la vraie loi — sin i = n×sin r — fut donnée plus tard par Willebrord Snell et René Descartes). Il aborde également le sujet de la vision et la perception des images par l’œil. Il est convaincu que la réception des images est assurée par la rétine et non pas le cristallin comme on le pensait à cette époque, et que le cerveau serait tout à fait capable de remettre à l’endroit l’image inversée qu’il reçoit.

Le phénomène de diffraction de Young. Source : http://data.abuledu.org/URI/50a7b737-le-phenomene-de-diffraction-de-young

Le phénomène de diffraction de Young

Dessin de Thomas Young (1773è1829), savant anglais, montrant le phénomène de diffraction de la lumière. A et B sont les deux sources de lumière, les interférences des ondes sont matérialisées en C, D, E, et F. Young presenta les résultats de cette expérience à la "Royal Society" de Londres en 1803.

Le spectre électromagnétique. Source : http://data.abuledu.org/URI/50a81854-le-spectre-electromagnetique

Le spectre électromagnétique

Proposition d'illustration du spectre électromagnétique, le spectre visible correspond aux couleurs en bas du schéma. La lumière visible, appelée aussi spectre visible ou spectre optique est la partie du spectre électromagnétique qui est visible pour l'œil humain. Il n'y a aucune limite exacte au spectre visible : l'œil adapté à la lumière possède généralement une sensibilité maximale à la lumière de longueur d'onde d'environ 550 nm, ce qui correspond à une couleur jaune-verte. Généralement, on considère que la réponse de l'œil couvre les longueurs d'ondes de 380 nm à 780 nm bien qu'une gamme de 400 nm à 700 nm soit plus commune. Les fréquences correspondantes vont de 350 à 750 THz (10¹² Hz). Cette gamme de longueur d'onde est importante pour le monde vivant car des longueurs d'ondes plus courtes que 380 nm endommageraient la structure des molécules organiques tandis que celles plus longues que 720 nm seraient absorbées par l'eau, constituant abondant du vivant. Ces extrêmes correspondent respectivement aux couleurs violet et rouge. Cependant, l'œil peut avoir une certaine réponse visuelle dans des gammes de longueurs d'onde encore plus larges. Les longueurs d'onde dans la gamme visible pour l'œil occupent la majeure partie de la fenêtre optique, une gamme des longueurs d'onde qui sont facilement transmises par l'atmosphère de la Terre.

Le spectroscope de Fraunhofer. Source : http://data.abuledu.org/URI/50a7678f-le-spectroscope-de-fraunhofer-

Le spectroscope de Fraunhofer

Photogravure (à partir d'un tableau de Richard Wimmer) de Joseph von Fraunhofer présentant son spectroscope. Source : "Essays in astronomy" - D. Appleton & company, 1900 (LCCN 00004435).

Lentille de Fresnel équipant les phares. Source : http://data.abuledu.org/URI/50a8efcc-lentille-de-fresnel-equipant-les-phares

Lentille de Fresnel équipant les phares

Lentille à échelons ou lentille de Fresnel. Grande optique de premier ordre de feu fixe à éclats réguliers ; Anonyme : 1870, bronze et cristal ; H. 254 x Diamètre 198 cm ; Poids 1500kg environ ; Exposé à Paris, palais de Chaillot ; Musée national de la Marine. Dans le domaine de l’optique appliquée, Fresnel invente la lentille à échelon (dite Lentille de Fresnel) utilisée pour accroître le pouvoir de l’éclairage des phares. Elle est encore utilisée dans les phares maritimes, mais aussi dans les phares automobiles et les projecteurs de cinéma.

Lettre de Newton sur la vision en 1682. Source : http://data.abuledu.org/URI/50a595d2-lettre-de-newton-sur-la-vision-en-1682

Lettre de Newton sur la vision en 1682

Lettre en anglais d'Isaac Newton au Dr. William Briggs, chirurgien ophtalmologiste (20 juin 1682) au sujet de son ouvrage "Une nouvelle théorie de la vision" (A New Theory of Vision) : British Museum Add. Ms. 4327 f. 100. Publiée en facsimile dans le "Dictionnaire encyclopédique" de Quillet, Paris, 1953. Avant Isaac Newton, on pensait que le prisme ajoutait des couleurs au faisceau de lumière blanche. Newton place alors un deuxième prisme de telle manière qu'il ne soit atteint que par une seule couleur et découvre que la couleur reste inchangée. Il en conclut que les prismes permettent de disperser les couleurs. Il utilise ensuite un deuxième prisme et réussit à recomposer un faisceau blanc à partir de l'arc-en-ciel généré par le premier prisme : la démonstration était faite que les couleurs ne sont pas le résultat d'une action du prisme sur la lumière blanche, mais bien que c'est la lumière blanche qui est composée de plusieurs couleurs.

Lumière. Source : http://data.abuledu.org/URI/5039416e-lumiere

Lumière

Photo d'une forte source de lumière dans le noir.

Lumière du soleil. Source : http://data.abuledu.org/URI/50394279-lumiere-du-soleil

Lumière du soleil

Photo du soleil vu de la terre.

Lumière passant à travers des fenêtres. Source : http://data.abuledu.org/URI/503941eb-lumiere-passant-a-travers-des-fenetres

Lumière passant à travers des fenêtres

Photo prise dans la salle des pas perdus à la gare de Chicago en 1943.

Lumières de nuit émises sur Terre. Source : http://data.abuledu.org/URI/50db1463-terre-lumieres-de-nuit-jpg

Lumières de nuit émises sur Terre

Lumières de nuit émises par la Terre, Image satellitale composite montrant l'émission nocturne de lumière vers l'espace, essentiellement concentrée dans l'hémisphère nord dans les pays les plus industrialisés ; en Amérique d'une part, en Europe de l'Ouest et dans l'est de la chine et au Japon. L'Inde - où une politique d'éclairage initiée par les Anglais a été poursuivie après l'indépendance - se démarque également. Il s'agit d'une superposition de photographies prises de nuit et par temps clair ; les limites des continents sont produites par l'ajout en couleurs sombres, des photographies équivalentes diurnes. Image composite par la NASA et le NOAA.

Lumières du palais présidentiel en Inde. Source : http://data.abuledu.org/URI/5039424a-lumieres-du-palais-presidentiel-en-inde

Lumières du palais présidentiel en Inde

Photo de nuit du palais présidentiel Indien.

Mesure de la vitesse de la lumière par Foucault. Source : http://data.abuledu.org/URI/50aa9fd1-mesure-de-la-vitesse-de-la-lumiere-par-foucault

Mesure de la vitesse de la lumière par Foucault

Appareillage utilisé par Foucault avec miroir tournant pour mesurer la vitesse de la lumière : en bas à gauche, la lumière est réfléchie par un miroir tournant (à gauche) en direction d'un miroir fixe (en haut) ; à droite, la lumière réfléchie en provenance du miroir stationnaire rebondit sur le miroir tournant qui a avancé d'un angle θ pendant le déplacement de la lumière. Le télescope situé à un angle 2θ de la source récupère le rayon réfléchi par le miroir tournant. Vers 1848, Fizeau et Foucault se lancent dans la mise au point d'expériences visant à mesure la vitesse de la lumière sur Terre, et à comparer la vitesse de la lumière dans l'air et dans l'eau.

Métaphore du cylindre. Source : http://data.abuledu.org/URI/50a59cb2-metaphore-du-cylindre

Métaphore du cylindre

Illustration de la dualité onde/corpuscule. Métaphore du cylindre : objet ayant à la fois les propriétés d'un cercle et d'un rectangle. La métaphore du cylindre est l'exemple d'un objet ayant des propriétés apparemment inconciliables. Il serait à première vue déroutant d'affirmer qu'un objet a à la fois les propriétés d'un cercle et d'un rectangle : sur un plan, un objet est soit un cercle, soit un rectangle. Mais si l'on considère un cylindre : une projection dans l'axe du cylindre donne un cercle, et une projection perpendiculairement à cet axe donne un rectangle. De la même manière, « onde » et « particule » sont des manières de voir les choses et non les choses en elles-mêmes.

Ombre et lumière. Source : http://data.abuledu.org/URI/5929f131-ombre-et-lumiere

Ombre et lumière

La séparation entre Ombre et lumière, Genesis, Paul Nash.

Onde lumineuse surfée par une fourmi. Source : http://data.abuledu.org/URI/50a8f34a-onde-lumineuse-surfee-par-une-fourmi

Onde lumineuse surfée par une fourmi

Onde lumineuse surfée par une fourmi.

Pinceau dans un verre d'eau. Source : http://data.abuledu.org/URI/53a9da24-pinceau-dans-un-verre-d-eau

Pinceau dans un verre d'eau

Réflexion totale de la lumière sur la partie inférieure d'un dioptre eau-air.

Portrait d'Hippolyte Fizeau. Source : http://data.abuledu.org/URI/50a78f29-portrait-d-hippolyte-fizeau

Portrait d'Hippolyte Fizeau

Armand Hippolyte Louis Fizeau (1819-1896), est un physicien, astronome français qui travailla notamment sur la lumière. En 1845, il réalise une première photographie nette du Soleil. En 1848, il découvre le décalage de fréquence d'une onde lorsque la source et le récepteur sont en mouvement l'un par rapport à l'autre (effet Doppler-Fizeau). C'est ainsi qu'il prédit le décalage vers le rouge des ondes lumineuses.

Portrait de Buys-Ballot. Source : http://data.abuledu.org/URI/50a76c93-portrait-de-buys-ballot

Portrait de Buys-Ballot

C.H.D. Buys Ballot (1817-1890), savant néermandais surtout connu pour ses recherches en météorologie, en particulier sur l'explication du sens de la circulation autour des dépressions et des anticyclones. Ses recherches ne se limitent pas à la météorologie. En 1845, Buys Ballot engage un groupe de musiciens pour jouer une note bien précise sur le train Utrecht-Amsterdam. Il enregistre ensuite la différence entre cette fréquence et celle perçue le long de la ligne par un observateur pour confirmer les équations de Christian Doppler concernant la propagation des ondes sonores (Effet Doppler-Fizeau).

Portrait de Doppler. Source : http://data.abuledu.org/URI/50a76a34-portrait-de-doppler

Portrait de Doppler

Portrait de Christian Doppler (1803-1853), physicien autrichien. publication la plus célèbre a été présentée le 25 mai 1842 à l'Académie royale des sciences de Bohème et a pour titre "Sur la lumière colorée des étoiles doubles et d'autres étoiles du ciel", utilisant l'effet Doppler. En 1846, Doppler publie une correction de son travail initial où il tient compte des vitesses relatives de la source de lumière et de l'observateur. En 1850, il fonde l'Institut de Physique de l'Université de Vienne dont il est seul professeur et le premier directeur.

Portrait de Fraunhofer. Source : http://data.abuledu.org/URI/50a76698-portrait-de-fraunhofer

Portrait de Fraunhofer

Portrait de Joseph von Fraunhofer, opticien et physicien allemand (1787-1826). Il fut l'inventeur du spectroscope avec lequel il repéra les raies du spectre solaire. il mit au point de nouvelles machines à polir les miroirs et de nouveaux types de verres optiques (le verre flint achromatique), qui apportèrent une amélioration décisive à la qualité des lentilles. Dans son institut d’optique, Fraunhofer ne se contentait pas de polir des lentilles ; il fabriquait entièrement des lunettes astronomiques, avec leur monture. On doit d'ailleurs à Fraunhofer les montures dites « équatoriales ». Aujourd'hui, la plupart des instruments d'amateur sont équipés de ce type de monture.

Projecteur. Source : http://data.abuledu.org/URI/51828756-projecteur

Projecteur

Un projecteur est un appareil qui combine une ou plusieurs source(s) lumineuse(s) avec un dispositif optique destiné à projeter un puissant faisceau de lumière dans une direction particulière.

Réfraction. Source : http://data.abuledu.org/URI/50a59f8c-refraction

Réfraction

Principe de réfraction d'onde selon Huygens-Fresnel (Augustin Jean Fresnel, né le 10 mai 1788 à Broglie et mort le 14 juillet 1827 à Ville-d'Avray, est un physicien français fondateur de l’optique moderne ; il proposa une explication de tous les phénomènes optiques dans le cadre de la théorie ondulatoire de la lumière). Le principe de Huygens-Fresnel est un principe utilisé en optique : il permet entre autres de calculer l'intensité dans les phénomènes de diffraction et d'interférence. Il consiste à considérer chaque point de l'espace indépendamment. Si un point M reçoit une onde d'amplitude E(M, t), alors on peut considérer qu'il réémet une onde sphérique de même fréquence, même amplitude et même phase. Au lieu de considérer que l'onde progresse de manière continue, on décompose sa progression en imaginant qu'elle progresse de proche en proche. Formulé par Fresnel en 1815, ce principe reprend la base du modèle ondulatoire développé par Huygens (1690). Soit une surface ∑ et une source lumineuse S. On découpe ∑ en surfaces élémentaires d∑ centrées autour d'un point P. Chaque point P de ∑ atteint par la lumière émise par la source S se comporte comme une source secondaire fictive émettant une ondelette sphérique.

Salle de théâtre. Source :

Photographie, Dessins et plans, loup, Lièvres, Bateaux, Grenouilles, Antiquités, Gravure, Peinture, Clip art, Balles et ballons, Amphibiens, Fleurs, Géométrie, Couleurs, Accumulateurs, Piles électriques, Plages, Forêts, Sable, Parasols, Cuisine (pain), Jardinage, Jardins, Réfrigérateurs, Réfrigération et appareils frigorifiques, Bains, Bovins de boucherie, Crustacés, Cuisine -- Appareils et matériel, Nuages, Produits viticoles, feu, Linux (système d'exploitation des ordinateurs), Compas, Salades, Livres illustrés pour enfants, Ombres, laine, Poisson, Plantes des jardins, Confitures, Outillage, Pêches, Cartes à jouer, Mer, Architecture végétale des jardins, Légumes, Potages, Navires à voiles, Découpage (cuisine), Viande, Viande -- Coupe, Étoiles, Cuisine (porc), Saucisses, Enseignes, Tables (meubles), Ongle, Cuisine (aliments naturels), Thé, Bleu, Mouton (viande), soleil, Cuisine (oeufs), Peur chez les animaux, Caricatures et dessins humoristiques, noir, Mécanique, Navires, Triangle, Oeufs, Baies (fruits), Porc, Émotions, Albums à colorier, Nombres cardinaux, Éléments de cuisine, Ustensiles de cuisine, Dinde (viande), Nouvelle-Zélande -- Civilisation, Boissons non alcoolisées, Peur, Pâtisseries, Familles, Fêtes -- Accessoires, Cuisine (fromage), Gelées (confiserie), Maillots de bain, Alimentation, Ciel, Temps -- Systèmes et normes, Oeufs -- Coquilles, Poissons d'eau douce, Parents et enfants, Cuisine (poisson), Véhicules prioritaires, Poulet (viande), Râteaux, Animaux des forêts, Cheminées, Couple -- Psychologie, Espace-temps, Cuisine (sucre), Bains de soleil, Terre, Veaux, Vents, Pyramides, Couple, Graines, Filage à la main, Poissons de mer, Rouge, Aluminium, Vert, Sacs, Membres, Cercle, Navires -- Équipement, Physique, Lumière, Lumière -- Propagation, Joie, Géologie -- Cartes, Poisson rouge, Saumon rouge, Agriculture -- Outillage, Coeur, Art médiéval, Trèfles, Pyramides -- Égypte, Cristaux, Blé, Batteries, Marbre, Fillettes, Caricature, Calcaire, Plantes méditerranéennes, Géométrie euclidienne, Navigation à voile, Cuisine (légumes verts), Sacs en tissu, Pelles, Thalès, Théorème de, Seizième siècle, Dix-neuvième siècle, Dix-septième siècle, Cuivre, Grumes, Albums, Pères, Pères et filles, Sentiers, Maisons individuelles, Pattes, Refus d'obéissance, Jardins médiévaux, Lièvre d'Europe, Méditerranée (région), Cuisine (thym), Aliments crus, Parapente, Vol libre, Dix-huitième siècle, France (Révolution) (1789-1799), Albrecht Dürer (1471-1528), Vinaigre, Poisson fumé, Poisson salé, Auckland (Nouvelle-Zélande), Nouvelle-Zélande (1945-....), Aliments, Cuisine (fruits), Aliments d'origine animale, Aliments fermentés, Cuisine (légumes), Produits de l'oeuf, Boissons alcoolisées, Hérodote (0484?-0420? av. J.-C.), Circulation, Vents -- Vitesse, Métamorphisme (géologie), Savants français, Cuisine (aliments crus), Cuisine (fruits de mer), Cuisine (aliments surgelés), Volaille (viande), Cuisine (poulet), Cuisine (volaille), Produits du blé, Sirops, Sauce à salade, Cuisine (viande), Cuisine (plantes odoriférantes), Crèmes (desserts), Entremets, Poisson surgelé, Agneau (viande), Desserts, Hors-d'oeuvre, Cuisine (baies), Cuisine (vinaigre), Ondes, Cuisine (céréales), Jeux de plage, Conduits d'évacuation de fumées, Fumées, Pull-over, Bronzage, Astérides, Seaux, Serviettes, Chlorure de sodium, Cycle hercynien, Boeuf (viande), Rôtis, Rotissoires, Plats complets, Astacidés, Cuisine (écrevisses), Décapodes (crustacés), Écrevisses, Vinaigrette, Champignons cultivés, Cuisine (champignons), Cuisine (truffes), Truffe du Périgord, Tubéracées, Cassis, Cassissier, Cuisine (cassis), Aliments -- Composition, Blanquette, Cuisine (veau), Veau (viande), Veaux -- Alimentation, Omble de fontaine, Poissonneries, Saumons, Saumons -- Pêche commerciale, Cuisine (semoule), Semoule, Cônes de pin, Pignons (graines), Aliments enrichis, Cuisine (restes), Tourtes, Deux, Jeux de société, Trois, Soupes, Infusions, Lumière, Théorie ondulatoire de la, Cuisson sur réchaud de table, Fondues, Savants allemands, Jumeaux, Interférence (optique), Rhubarbe, Augustin Fresnel (1788 - 1827), Diffraction, Ondes -- Diffraction, Énergie, Photons, Temps, Mesure du, France (Chute des Girondins) ( 30 mai-2 juin 1793), Exécutions capitales et exécuteurs, France (1793), Espace de Minkowski, Relativité (physique), Cônes de lumière, Relativité générale (physique), Architecture égyptienne, Constructions en pierres sèches, Cuisine (rhubarbe), Rhubarbes, Cuisine (boeuf), Cuisines, Aliments -- Consommation, Césium, Horloges à césium, Horloges atomiques, Berne (Suisse), Échelles de temps atomique, Temps (droit international), Johannes Kepler (1571-1630), Des révolutions des orbes célestes - Nicolas Copernic (1473-1543), Héliocentrisme, Énergie éolienne en mer, Portance, Aérodynamique, Relativité restreinte (physique), Muons, Rayons cosmiques, Aquarelle, Le lièvre - Albrecht Dürer (1471-1528), Peintres allemands, Cuisine (plantes aromatiques), Résistance à la chaleur, Thymus (plantes), Abats, Cuisine (abats), Tripes, Aliments -- Réfrigération, Entreposage frigorifique, Frigidaire, Frigo, Danse maorie, Ethnologie -- Nouvelle-Zélande, Linux (logiciels), Rugby, Bayonne (Pyrénées-Atlantiques), Ferias, Aliment, Chevreau (viande), Tacuini sanitatis - al-Muẖtār ibn al-Ḥasan ibn ʿAbdūn ibn Saʿdūn Ibn Buṭlān (10..-1066?), Tangram, Corrosion, Corrosion électrochimique, Assemblages à rivets, Corrosion galvanique, Réactions chimiques -- Mécanismes, Électricité, Symétrie, Constructions géométriques, Génie mécanique, Ressorts et suspension, Ressorts, Volutes, Algues marines, Algues -- Aspect économique, Navires -- Australie, Navires -- Déchets -- Élimination, Navires océanographiques, Navires -- Règlements de sécurité, Sargasses, Mer des, Auteurs arabes, Yuwānīs Ibn Buṭlān (10..-1066?), Jardins -- Aspect symbolique, Famille -- Anthropologie, Famille -- Loisirs, Famille -- Santé et hygiène, Mouton (laine), Quenouilles, Regroupement familial, Veillées, Scènes de la vie quotidienne, Vie quotidienne, Révolution industrielle, Projection cinématographique, Signes et symboles, Carreau, Cartes à jouer, Jeux avec, Pique, Trèfle, Chaleur -- Convection, Dissipateurs thermiques (électronique), Électronique, Acides aminés, Protéines

Salle de théâtre

Photo d'une salle de théâtre : The Journal Tyne Theatre

Aciérie de nuit. Source : http://data.abuledu.org/URI/52cde547-acierie-de-nuit

Aciérie de nuit

Aciérie de nuit : Hauts fourneaux, avec effet de pollution lumineuse, aciérie installée dans la zone minière et industrielle de Vítkovice en Tchéquie.

Ampoule allumée. Source : http://data.abuledu.org/URI/5435780b-ampoule-allumee

Ampoule allumée

Ampoule allumée.

Arc en ciel dans une fontaine. Source : http://data.abuledu.org/URI/53e330b1-arc-en-ciel-dans-une-fontaine

Arc en ciel dans une fontaine

Arc en ciel dans une fontaine du Champ-de-Mars à Paris.

Cône de lumière. Source : http://data.abuledu.org/URI/50ad8175-cone-de-lumiere

Cône de lumière

Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales : cône de lumière. Un espace de Minkowski, du nom de son inventeur Hermann Minkowski, est un espace affine mathématique à quatre dimensions modélisant l'espace-temps de la relativité restreinte : les propriétés physiques présentes dans cette théorie correspondent à des propriétés géométriques de cet espace, la réciproque n'étant pas vraie car le réalisme physique n'est pas entièrement contenu dans cette géométrisation.

Cône de Lumière. Source : http://data.abuledu.org/URI/50ad8434-cone-de-lumiere

Cône de Lumière

Le cône de lumière de l'évènement e0. La flèche rose montre la dimension temporelle et les flèches grises, les dimensions spatiales. Un événement étant donné, l'ensemble des événements physiquement joignables dans le futur et de ceux du passé à partir desquels on pouvait joindre l'événement donné, forme un cône dans l'espace de Minkowski, appelé cône de lumière, et permettant des raisonnements purement géométriques par des dessins appelés diagrammes de Minkowski. Cet espace est pseudo-euclidien : bien que la métrique ne soit qu'une pseudo-métrique, les géodésiques y sont les droites, ce qui fait dire que cet espace est plat comme dans un espace euclidien. Les inégalités triangulaires qui y sont valables montrent qu'un segment est le chemin le plus long entre deux points, ce qui est une nette différence avec la géométrie euclidienne.

Diffraction de Fresnel (courbe). Source : http://data.abuledu.org/URI/50a8d2e4-diffr-fresnel-courbe-petit-png

Diffraction de Fresnel (courbe)

Courbe donnant l'intensité de la lumière diffractée par un bord d'écran observée à une distance r=1 mètre. La longueur d'onde est λ=0,5 micromètres. On observe que la largeur de la première oscillation est de l'ordre de √(λr), les autres oscillations sont plus rapides et moins marquées. L'intensité que l'on aurait en l'absence de diffraction est représentée en rouge. L'intégrale appelée transformation de Fresnel permet de déterminer la figure de diffraction observée à distance finie de l'ouverture diffractante. Ce genre de diffraction peut par exemple s'observer sur les bords de l'ombre géométrique d'un écran comme sur ce schéma.

Double polarisation en radar. Source : http://data.abuledu.org/URI/5232dfda-double-polarisation-en-radar

Double polarisation en radar

Principe de la double polarisation utilisé en radar. Une gouttelette prend une forme oblate quand elle augmente de masse et les ondes polarisées horizontalement (gauche) et verticalement (droite) donneront des échos d'intensités différentes en revenant au radar. D'autre part, la grêle est plus ou moins circulaire et donc les retours seront égaux. D'autres objets ont des axes préférés. En comparant les retours verticaux et horizontaux avec d'autres données radars, il est possible d'estimer directement le type de cibles vues par le radar.

Éclairage public solaire à Carabane. Source : http://data.abuledu.org/URI/5493630b-eclairage-public-solaire-a-carabane

Éclairage public solaire à Carabane

Eclairage public solaire le long de larges allées à Carabane (Casamance, Sénégal).

Effet Doppler. Source : http://data.abuledu.org/URI/50a78ac8-effet-doppler

Effet Doppler

L'effet Doppler appliqué à la lumière des galaxies.

Effet Doppler d'une ambulance. Source : http://data.abuledu.org/URI/50a771d3-effet-doppler-d-une-ambulance

Effet Doppler d'une ambulance

Mesure de l'Effet Doppler de la sirène d'une ambulance : 1=source émise, 2=écho.

Ensoleillement en Europe. Source : http://data.abuledu.org/URI/50dad509-ensoleillement-en-europe

Ensoleillement en Europe

Carte de l'ensoleillement en Europe (SolarGIS 2011) : moyenne d'avril 2004 à mars 2010. L’ensoleillement, en météorologie, est le temps pendant lequel un lieu est exposé au soleil. L’ensoleillement peut se mesurer pour différentes durées : une journée, un mois, une année, etc. On utilise un héliographe pour enregistrer cette mesure. L’éclairement d’un lieu est soumis à de nombreux paramètres : astronomiques (heures de lever et de coucher du soleil), topographiques, météorologiques (nuages, brouillard), naturels (végétation, faune) ou encore humains (bâtiments, passage de véhicules…).

Ensoleillement en France. Source : http://data.abuledu.org/URI/50dad914-ensoleillement-en-france

Ensoleillement en France

Carte de l'ensoleillement en France métropolitaine : "Irradiation Globale Horizontale en France, SolarGIS 2011" (moyenne de la somme annuelle, de 2004 à 2010). Les estimations climatologiques de l’ensoleillement sont importantes en agrométéorologie ou pour la mise en œuvre de production d’énergie solaire (thermique ou photovoltaïque) ; elles jouent également un rôle notable pour l’appréciation de l’attrait touristique d’une région. On estime également qu’un ensoleillement trop faible pourrait être un des facteurs de la « dépression saisonnière » qui touche certaines personnes en automne et en hiver.

Expérience de Fizeau-Mascart. Source : http://data.abuledu.org/URI/50a7922f-fizeau-mascart1-png

Expérience de Fizeau-Mascart

Schéma expérimental de Fizeau-Mascart (1851) : de l'eau circule en sens inverse dans les tuyaux parcourus par les rayons en interférence. La différence de vitesse de la lumière dans les deux sens de parcours de l’eau est mise en évidence par un déplacement des franges.

Idée brillante de fumeur. Source : http://data.abuledu.org/URI/53934526-idee-brillante-de-fumeur

Idée brillante de fumeur

Idée brillante de fumeur de pipe.

Interférences. Source : http://data.abuledu.org/URI/50a7b098-interferences

Interférences

Simulation d'interférences d'ondes circulaires émises par deux sources voisines. La position des deux sources est marquée par une croix.

L'effet Doppler : le paradoxe des jumeaux. Source : http://data.abuledu.org/URI/50a78dd8-l-effet-doppler-le-paradoxe-des-jumeaux

L'effet Doppler : le paradoxe des jumeaux

Tracés des cônes de lumière issus de la Terre (pointillés rouges) et du mobile (pointillés verts). La fréquence de réception, respectivement par le mobile, et par la Terre, traduit l'effet Doppler pour les phases aller et retour. Le schéma a été réalisé (pour simplifier la présentation - analyse des rapports de fréquence) dans le cas d'une vitesse égale à 0,8c. Des frères jumeaux sont nés sur Terre. L'un fait un voyage aller-retour dans l'espace en fusée à une vitesse proche de celle de la lumière. D'après le phénomène de dilatation du temps de la relativité restreinte, pour celui qui est resté sur Terre la durée du voyage est plus grande que pour celui qui est envoyé dans l'espace. Ce dernier rentre donc plus jeune que son jumeau sur Terre. Mais celui qui voyage est en droit de considérer, les lois de la physique étant identiques par changement de référentiel, qu'il est immobile et que c'est son frère et la Terre qui s'éloignent à grande vitesse de lui. Il pourrait donc conclure que c'est son frère qui est resté sur Terre qui est au final plus jeune. Ainsi chaque jumeau pense, selon les lois de la relativité restreinte, retrouver l'autre plus jeune que lui. Est-on tombé sur un véritable paradoxe ?

L'effet Doppler (voitures). Source : http://data.abuledu.org/URI/50a78981-l-effet-doppler-voitures-

L'effet Doppler (voitures)

L'effet Doppler appliqué à deux voitures.

Lapin en ombres chinoises. Source : http://data.abuledu.org/URI/53052557-lapin-en-ombres-chinoises

Lapin en ombres chinoises

Lapin projeté par deux enfants en ombres chinoises sur un mur, par Ferdinand du Puigaudeau (1864-1930).

Le baron Munchhausen sous l'eau en 1896. Source : http://data.abuledu.org/URI/567eb698-le-baron-munchhausen-sous-l-eau-en-1896

Le baron Munchhausen sous l'eau en 1896

Le baron Munchhausen sous l'eau en 1896.

Le Petit Poucet 6. Source : http://data.abuledu.org/URI/52140692-le-petit-poucet-6

Le Petit Poucet 6

Le petit Poucet - Charles Perrault (1628-1703), illustration des ''Histoires ou Contes du Temps passé : Les Contes de ma Mère l'Oye'' par Gustave Doré (1832-1883), ''Les Contes de Perrault'' 1867.

Le Petit Poucet 7. Source : http://data.abuledu.org/URI/5214071a-le-petit-poucet-7

Le Petit Poucet 7

Le petit Poucet - Charles Perrault (1628-1703), illustration des ''Histoires ou Contes du Temps passé : Les Contes de ma Mère l'Oye'' par Gustave Doré (1832-1883), ''Les Contes de Perrault'' 1867.

Le printemps de Monet. Source : http://data.abuledu.org/URI/50fb13c2-le-printemps-de-monet

Le printemps de Monet

Tableau peint par Claude Monet en 1872, après son déménagement à Argenteuil en décembre 1871, représentant une lectrice assise à l'ombre d'une haie.