Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Lumière -- Absorption | Dessins et plans | Photographie | Absorption | Rayonnement solaire | Lumière -- Diffusion | Photons -- Diffusion | Diffusion atmosphérique | Son -- Absorption | Sourdines | Atmosphère | Rayleigh, Diffusion de | Musique | Cor | Cor d'harmonie | Instruments à vent | Éclairage artificiel | Instruments de musique | Son | Clip art | ...
Absorption entre niveaux atomiques. Source : http://data.abuledu.org/URI/50b3d036-absorption-entre-niveaux-atomiques

Absorption entre niveaux atomiques

Processus d'interaction entre la lumière et la matière : illustration du phénomène d'absorption entre les niveaux atomiques : Le photon d'énergie h u fait passer l'atome de son état fondamental 1 vers l'état excité 2. Lorsqu'il est éclairé par un rayonnement électromagnétique (la lumière), un atome peut passer d'un état n à un état n' > n, en prélevant l'énergie correspondante sur le rayonnement. Ce processus est résonnant : la fréquence du rayonnement omega doit être proche d'une fréquence de Bohr atomique pour qu'il puisse se produire. Les fréquences de Bohr atomiques sont définies par hbaromega_{nn'}=(E_{n'}-E_n), où E_{n'} > E_n sont les énergies des états n' et n. On peut interpréter ce processus comme l'absorption d'un photon du rayonnement (d'énergie hbaromega=h u) faisant passer l'atome du niveau d'énergie E_n vers le niveau d'énergie E_{n'}. La condition de résonance correspond alors à la conservation de l'énergie.

Opacité électromagnétique de l'atmosphère. Source : http://data.abuledu.org/URI/50be41a2-opacite-electromagnetique-de-l-atmosphere

Opacité électromagnétique de l'atmosphère

Opacité électromagnétique (ou transmittance) de l'atmosphère en fonction de la longueur d'onde (jusqu'à 1km). L’absorption optique est une autre propriété importante de l'atmosphère. Différentes molécules absorbent différentes longueurs d'onde de radiations. Par exemple, l'O2 et l'O3 absorbent presque toutes les longueurs d'onde inférieures à 300 nanomètres. L'eau (H2O) absorbe la plupart des longueurs d'onde au-dessus de 700 nm, mais cela dépend de la quantité de vapeur d'eau dans l'atmosphère. Quand une molécule absorbe un photon, cela accroît son énergie. Quand les spectres d'absorption des gaz de l'atmosphère sont combinés, il reste des « fenêtres » de faible opacité, autorisant le passage de certaines bandes lumineuses. La fenêtre optique va d'environ 300 nm (ultraviolet-C) jusqu'aux longueurs d'onde que les humains peuvent voir, la lumière visible (communément appelé lumière), à environ 400–700 nm et continue jusqu'aux infrarouges vers environ 1100 nm. Il y a aussi des fenêtres atmosphériques et radios qui transmettent certaines ondes infrarouges et radio sur des longueurs d'onde plus importantes. Par exemple, la fenêtre radio s'étend sur des longueurs d'onde allant de un centimètre à environ onze mètres. Le graphe ci-dessus représente 1-T (exprimé en %) (T:transmittance)

Absorption de la chlorophylle. Source : http://data.abuledu.org/URI/50e41760-absorption-de-la-chlorophylle

Absorption de la chlorophylle

Grahique du spectre d'absorption de la chlorophylle : en vert le spectre d'absorption de la chlorophylle a et en rouge le spectre d'absorption de la chlorophylle b. Le spectre visible se situe approximativement entre 380 nm à 780 nm bien qu'une gamme de 400 nm à 700 nm soit plus commune. La lumière perçue comme « verte » par l’œil et le cerveau humain a une longueur d'onde, selon les notions de la couleur « verte », approximativement entre 490 et 570 nanomètres. On remarque sur le graphique que l’absorbance de la chlorophylle est moindre pour cette plage du spectre électromagnétique. La chlorophylle absorbe donc la majeure partie du spectre visible sauf la lumière verte. La lumière rouge a une longueur d'onde de 620-750nm et une fréquence de 400-484THz. La région du rouge atteint un maximum de 660-670 nm pour la Chlorophylle A et aux alentours de 635-645 nm pour la Chlorophylle B. Les plantes ont un grande besoin des ondes rouges sauf celles beaucoup plus longues que 670 nm. La lumière bleue a une longueur d'onde de 450-495nm et une fréquence de 606-668THz. La photosynthèse fonctionne le mieux grâce aux ondes de la couleur rouge, et à moindre degré à celles de la couleur bleue. Mais certaines plantes ont un plus grand besoin de bleu que d'autres pour une croissance saine - notamment pour que les fleurs éclosent et pour que les fruits poussent.

Ampoule allumée. Source : http://data.abuledu.org/URI/5435780b-ampoule-allumee

Ampoule allumée

Ampoule allumée.

Rayons du crépuscule. Source : http://data.abuledu.org/URI/50be3dfe-rayons-du-crepuscule

Rayons du crépuscule

Rayons du crépuscule : les différentes couleurs sont dues à la dispersion de la lumière produite par l'atmosphère. Quand la lumière traverse l'atmosphère, les photons interagissent avec elle à travers la diffusion des ondes. Si la lumière n'interagit pas avec l'atmosphère, c'est la radiation directe et cela correspond au fait de regarder directement le soleil. Les radiations indirectes concernent la lumière qui est diffusée dans l'atmosphère. Par exemple, lors d'un jour couvert quand les ombres ne sont pas visibles il n'y a pas de radiations directes pour la projeter, la lumière a été diffusée. Un autre exemple, dû à un phénomène appelé la diffusion Rayleigh, les longueurs d'onde les plus courtes (bleu) se diffusent plus aisément que les longueurs d'onde les plus longues (rouge). C'est pourquoi le ciel parait bleu car la lumière bleue est diffusée. C'est aussi la raison pour laquelle les couchers de soleil sont rouges. Parce que le soleil est proche de l'horizon, les rayons solaires traversent plus d'atmosphère que la normale avant d'atteindre l'œil par conséquent toute la lumière bleue a été diffusée, ne laissant que le rouge lors du soleil couchant.

Sourdine de cor avec sa lanière. Source : http://data.abuledu.org/URI/5300bc20-sourdine-de-cor-avec-sa-laniere

Sourdine de cor avec sa lanière

Les sourdines de cor ont pour but d'atténuer le son et de modifier le timbre. À quelques exceptions près, le cor n'utilise qu'un seul type de sourdine : la sourdine sèche. Contrairement aux sons bouchés, la sourdine ne modifie pas la hauteur d'un son. La sourdine des cors possède souvent une lanière formant une boucle dans laquelle le musicien passe la main. Cela permet d'avoir la sourdine à portée de la main pendant le jeu (elle pend sous le poignet) et de gagner du temps à sa mise en place dans le pavillon ainsi qu'à son retrait.