Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Relativité restreinte (physique) | Physique | Photographie | Relativité (physique) | Relativité générale (physique) | Albert Einstein (1879-1955) | Espace-temps | Pignons (graines) | Cuisine (semoule) | Aliments enrichis | Semoule | Cônes de pin | Deux | Trois | Jeux de société | Saumons -- Pêche commerciale | Tourtes | Cuisine (restes) | Veau (viande) | ...
Objets en déplacement dans l'espace-temps. Source : http://data.abuledu.org/URI/52c4390d-objets-en-deplacement-dans-l-espace-temps

Objets en déplacement dans l'espace-temps

Une ligne d'univers, une feuille d'univers et un volume d'univers, engendrés par une particule ponctuelle, une corde, et une brane. Une ligne d'univers trace la trajectoire d'un seul point dans l'espace-temps, défini comme collection de points appelés événements, avec un système coordonné et continu, identifiant les événements. Chaque événement peut être libellé par quatre nombres : une coordonnée de temps et 3 coordonnés d'espaces ; donc l'espace-temps est un espace quadridimensionnel. Une feuille d'univers est la surface bidimensionnelle analogue, tracée par une ligne (comme une corde) voyageant à travers l'espace-temps. La feuille d'univers d'une corde ouverte est un ruban, et celle d'une corde fermée, un cylindre. Source : http://fr.wikipedia.org/wiki/Ligne_d%27univers

Relativité restreinte : collision entre deux particules. Source : http://data.abuledu.org/URI/50b2162e-relativite-restreinte-collision-entre-deux-particules

Relativité restreinte : collision entre deux particules

Conservation du quadrivecteur énergie-impulsion dans une collision entre deux particules. Une collision de deux particules est représenté dans la figure ci-contre. Une particule A de masse 8 (en unités arbitraires) animée d'une vitesse v/c de 15/17 dirigée vers la droite frappe une particule de masse 12 arrivant en sens inverse avec une vitesse v/c de 5/13 (les chiffres ont été choisis pour que les calculs "tombent juste"). Après la collision, A rebondit dans l'autre sens en ayant communiqué à B une partie de sa quantité de mouvement. L'énergie totale, somme des énergies des particules A et B est conservée, de même que la quantité de mouvement totale. Les grandeurs E et p indiquées représentent en réalité (E/c2) et (p/c) et sont exprimées en unités de masse, arbitraires. Avec ces grandeurs on a la relation E 2 = p 2 + m 2. Le facteur γ est toujours défini par γ = [1 - (v/c)2]-1/2.

Rencontre entre Einstein et Vaz Ferreira à Montevideo. Source : http://data.abuledu.org/URI/5501df77-rencontre-entre-einstein-et-vaz-ferreira-a-montevideo

Rencontre entre Einstein et Vaz Ferreira à Montevideo

Monument et plaque commémorative de la rencontre entre Einstein et Vaz Ferreira, Montevideo, Uruguay. Physicien. - Membre, Preußische Akademie der Wissenschaften, Berlin (1914-1933). - Professeur, Institute of advanced study, Princeton university, N.J. (1933-1955). - Prix Nobel de physique (1921). Source : data-bnf

Salle de théâtre. Source :

Photographie, Dessins et plans, loup, Lièvres, Bateaux, Grenouilles, Antiquités, Gravure, Peinture, Clip art, Balles et ballons, Amphibiens, Fleurs, Géométrie, Couleurs, Accumulateurs, Piles électriques, Plages, Forêts, Sable, Parasols, Cuisine (pain), Jardinage, Jardins, Réfrigérateurs, Réfrigération et appareils frigorifiques, Bains, Bovins de boucherie, Crustacés, Cuisine -- Appareils et matériel, Nuages, Produits viticoles, feu, Linux (système d'exploitation des ordinateurs), Compas, Salades, Livres illustrés pour enfants, Ombres, laine, Poisson, Plantes des jardins, Confitures, Outillage, Pêches, Cartes à jouer, Mer, Architecture végétale des jardins, Légumes, Potages, Navires à voiles, Découpage (cuisine), Viande, Viande -- Coupe, Étoiles, Cuisine (porc), Saucisses, Enseignes, Tables (meubles), Ongle, Cuisine (aliments naturels), Thé, Bleu, Mouton (viande), soleil, Cuisine (oeufs), Peur chez les animaux, Caricatures et dessins humoristiques, noir, Mécanique, Navires, Triangle, Oeufs, Baies (fruits), Porc, Émotions, Albums à colorier, Nombres cardinaux, Éléments de cuisine, Ustensiles de cuisine, Dinde (viande), Nouvelle-Zélande -- Civilisation, Boissons non alcoolisées, Peur, Pâtisseries, Familles, Fêtes -- Accessoires, Cuisine (fromage), Gelées (confiserie), Maillots de bain, Alimentation, Ciel, Temps -- Systèmes et normes, Oeufs -- Coquilles, Poissons d'eau douce, Parents et enfants, Cuisine (poisson), Véhicules prioritaires, Poulet (viande), Râteaux, Animaux des forêts, Cheminées, Couple -- Psychologie, Espace-temps, Cuisine (sucre), Bains de soleil, Terre, Veaux, Vents, Pyramides, Couple, Graines, Filage à la main, Poissons de mer, Rouge, Aluminium, Vert, Sacs, Membres, Cercle, Navires -- Équipement, Physique, Lumière, Lumière -- Propagation, Joie, Géologie -- Cartes, Poisson rouge, Saumon rouge, Agriculture -- Outillage, Coeur, Art médiéval, Trèfles, Pyramides -- Égypte, Cristaux, Blé, Batteries, Marbre, Fillettes, Caricature, Calcaire, Plantes méditerranéennes, Géométrie euclidienne, Navigation à voile, Cuisine (légumes verts), Sacs en tissu, Pelles, Thalès, Théorème de, Seizième siècle, Dix-neuvième siècle, Dix-septième siècle, Cuivre, Grumes, Albums, Pères, Pères et filles, Sentiers, Maisons individuelles, Pattes, Refus d'obéissance, Jardins médiévaux, Lièvre d'Europe, Méditerranée (région), Cuisine (thym), Aliments crus, Parapente, Vol libre, Dix-huitième siècle, France (Révolution) (1789-1799), Albrecht Dürer (1471-1528), Vinaigre, Poisson fumé, Poisson salé, Auckland (Nouvelle-Zélande), Nouvelle-Zélande (1945-....), Aliments, Cuisine (fruits), Aliments d'origine animale, Aliments fermentés, Cuisine (légumes), Produits de l'oeuf, Boissons alcoolisées, Hérodote (0484?-0420? av. J.-C.), Circulation, Vents -- Vitesse, Métamorphisme (géologie), Savants français, Cuisine (aliments crus), Cuisine (fruits de mer), Cuisine (aliments surgelés), Volaille (viande), Cuisine (poulet), Cuisine (volaille), Produits du blé, Sirops, Sauce à salade, Cuisine (viande), Cuisine (plantes odoriférantes), Crèmes (desserts), Entremets, Poisson surgelé, Agneau (viande), Desserts, Hors-d'oeuvre, Cuisine (baies), Cuisine (vinaigre), Ondes, Cuisine (céréales), Jeux de plage, Conduits d'évacuation de fumées, Fumées, Pull-over, Bronzage, Astérides, Seaux, Serviettes, Chlorure de sodium, Cycle hercynien, Boeuf (viande), Rôtis, Rotissoires, Plats complets, Astacidés, Cuisine (écrevisses), Décapodes (crustacés), Écrevisses, Vinaigrette, Champignons cultivés, Cuisine (champignons), Cuisine (truffes), Truffe du Périgord, Tubéracées, Cassis, Cassissier, Cuisine (cassis), Aliments -- Composition, Blanquette, Cuisine (veau), Veau (viande), Veaux -- Alimentation, Omble de fontaine, Poissonneries, Saumons, Saumons -- Pêche commerciale, Cuisine (semoule), Semoule, Cônes de pin, Pignons (graines), Aliments enrichis, Cuisine (restes), Tourtes, Deux, Jeux de société, Trois, Soupes, Infusions, Lumière, Théorie ondulatoire de la, Cuisson sur réchaud de table, Fondues, Savants allemands, Jumeaux, Interférence (optique), Rhubarbe, Augustin Fresnel (1788 - 1827), Diffraction, Ondes -- Diffraction, Énergie, Photons, Temps, Mesure du, France (Chute des Girondins) ( 30 mai-2 juin 1793), Exécutions capitales et exécuteurs, France (1793), Espace de Minkowski, Relativité (physique), Cônes de lumière, Relativité générale (physique), Architecture égyptienne, Constructions en pierres sèches, Cuisine (rhubarbe), Rhubarbes, Cuisine (boeuf), Cuisines, Aliments -- Consommation, Césium, Horloges à césium, Horloges atomiques, Berne (Suisse), Échelles de temps atomique, Temps (droit international), Johannes Kepler (1571-1630), Des révolutions des orbes célestes - Nicolas Copernic (1473-1543), Héliocentrisme, Énergie éolienne en mer, Portance, Aérodynamique, Relativité restreinte (physique), Muons, Rayons cosmiques, Aquarelle, Le lièvre - Albrecht Dürer (1471-1528), Peintres allemands, Cuisine (plantes aromatiques), Résistance à la chaleur, Thymus (plantes), Abats, Cuisine (abats), Tripes, Aliments -- Réfrigération, Entreposage frigorifique, Frigidaire, Frigo, Danse maorie, Ethnologie -- Nouvelle-Zélande, Linux (logiciels), Rugby, Bayonne (Pyrénées-Atlantiques), Ferias, Aliment, Chevreau (viande), Tacuini sanitatis - al-Muẖtār ibn al-Ḥasan ibn ʿAbdūn ibn Saʿdūn Ibn Buṭlān (10..-1066?), Tangram, Corrosion, Corrosion électrochimique, Assemblages à rivets, Corrosion galvanique, Réactions chimiques -- Mécanismes, Électricité, Symétrie, Constructions géométriques, Génie mécanique, Ressorts et suspension, Ressorts, Volutes, Algues marines, Algues -- Aspect économique, Navires -- Australie, Navires -- Déchets -- Élimination, Navires océanographiques, Navires -- Règlements de sécurité, Sargasses, Mer des, Auteurs arabes, Yuwānīs Ibn Buṭlān (10..-1066?), Jardins -- Aspect symbolique, Famille -- Anthropologie, Famille -- Loisirs, Famille -- Santé et hygiène, Mouton (laine), Quenouilles, Regroupement familial, Veillées, Scènes de la vie quotidienne, Vie quotidienne, Révolution industrielle, Projection cinématographique, Signes et symboles, Carreau, Cartes à jouer, Jeux avec, Pique, Trèfle, Chaleur -- Convection, Dissipateurs thermiques (électronique), Électronique, Acides aminés, Protéines

Salle de théâtre

Photo d'une salle de théâtre : The Journal Tyne Theatre

Albert Einstein, prix Nobel en 1921. Source : http://data.abuledu.org/URI/50b23360-albert-einstein-prix-nobel-en-1921

Albert Einstein, prix Nobel en 1921

Albert Einstein, photographie officielle du Prix Nobel de Physique en 1921 à 42 ans.

Courbure de l'espace-temps sous le poids de la Terre. Source : http://data.abuledu.org/URI/50ad84e7-courbure-de-l-espace-temps-sous-le-poids-de-la-terre

Courbure de l'espace-temps sous le poids de la Terre

Illustration de l'influence d'une masse (ici, la Terre) sur l'espace-temps. En physique, l'espace-temps est une représentation mathématique de l'espace et du temps comme deux notions inséparables et s'influençant l'une l'autre, suite à l'apparition de la relativité restreinte et sa représentation géométrique qu'est l'espace de Minkowski, et dont l'importance a été renforcée par la relativité générale. Cette conception de l'espace et du temps est l'un des grands bouleversements survenus au début du XXe siècle dans le domaine de la physique, mais aussi pour la philosophie.

Deux lignes d'univers. Source : http://data.abuledu.org/URI/52c43553-deux-lignes-d-univers

Deux lignes d'univers

Deux exemples de lignes d'univers : En physique, la ligne d'univers d'un objet est la trajectoire d'un objet lorsqu'il voyage à travers l'espace-temps en 4 dimensions. Le concept de ligne d'univers se distingue du concept de l'« orbite » ou de la « trajectoire » (tel que l'orbite d'un corps dans l'espace ou la trajectoire d'un camion sur une route) par la dimension temporelle. L'idée des lignes d'univers trouve son origine dans la physique et Einstein en fut le pionnier. Le terme est maintenant utilisé le plus souvent dans les théories de la relativité (générale ou restreinte, par exemple). Cependant, les lignes d'univers sont une manière de représenter le cours des événements. Son utilisation n'est pas liée à une théorie spécifique. Dans un usage général, une ligne d'univers est un chemin séquentiel d'événements (avec le temps et l'endroit comme dimensions) qui marquent l'histoire d'un objet. Le carnet de bord d'un navire est une description de sa ligne d'univers, pour autant qu'il comprenne une « étiquette de temps » attachée à chaque position. Il en va de même pour la vitesse d'un navire selon une mesure de distance (appelée métrique) appropriée à la courbe de la surface de la Terre.

Diagrame de Minkowski. Source : http://data.abuledu.org/URI/50ad7e1a-diagrame-de-minkowski

Diagrame de Minkowski

Règle de projection d'un événement A sur les axes (x,ct) et (x', ct') : représentation assymétrique. Dans une représentation asymétrique (la plus commune), où un référentiel (x,ct) est considéré au repos et l'autre (x',ct') en mouvement avec une vitesse v (rectiligne et uniforme) par rapport à lui, le diagramme de Minkowski se construit en représentant le premier référentiel avec des axes orthogonaux. Les coordonnées (x,ct) et (x',ct') d'un même événement A se trouvent par projection sur chaque axe, parallèlement à l'autre axe du référentiel, conformément aux règles usuelles des coordonnées cartésiennes. Cette représentation est alors apte à décrire un certain nombre de raisonnements qualitatifs et quantitatifs : dilatation des durées, contraction des longueurs, combinaison des vitesses... combinaison de transformation de Lorentz successives (unidimensionnelles).

Diagrame de Minkowski. Source : http://data.abuledu.org/URI/50ad7f14-diagrame-de-minkowski

Diagrame de Minkowski

Diagrame de Minkowski : représentation symétrique, avec les lignes de simultanéité pour chaque observateur. Il existe une représentation symétrique du diagramme de Minkowski (appelée également diagramme de Loedel d'après le physicien Enrique Loedel Palumbo qui a introduit le premier cette représentation symétrique) où aucun référentiel n'est privilégié. Les deux systèmes d'axes sont représentés symétriquement par rapport aux directions orthogonales, et sont séparés par un angle \beta tel que : \sin(\beta) = \frac{v}{c}. Contrairement à la représentation asymétrique, l'échelle et la graduation des axes des deux référentiels est la même, ce qui facilite l'interprétation des figures. Cette représentation apparaît plus proche de l'esprit de la relativité où aucun référentiel n'est privilégié : en effet, dans la représentation asymétrique, le fait de prendre les axes Ot et Ox orthogonaux est arbitraire, alors que dans la représentation symétrique, l'orthogonalité de Ot avec Ox' et de Ot' avec Ox résulte des symétries, et donne immédiatement l'invariance de la distance de Minkowski entre deux événements. Par définition, tous les événements situés sur l'axe (0,x) sont simultanés (possèdent le même temps t = 0). En conséquence, toutes les droites parallèles à (O,x) sont des lignes de simultanéité de l'observateur situé dans le référentiel (x,t). De même, toutes les droites parallèles à (O,x') sont les lignes de simultanéité pour l'observateur situé dans le référentiel (x',t'). Tous les événements situés sur ces droites se passent "au même instant" pour un observateur donné. Cette simultanéité de 2 événements distants spatialement et qui dépendent du référentiel correspond bien à celle proposée par Einstein à l'aide de signaux lumineux. Le diagramme de Minkowski illustre la relativité de la simultanéité. La théorie de la relativité restreinte stipule en effet que deux événements peuvent être vus comme simultanés pour un observateur, et non simultanés pour un autre en déplacement par rapport au premier. Il est même possible, quand les deux événements sont séparés par un intervalle de genre espace que deux événements soient vus dans un certain ordre par un observateur, et dans l'ordre inverse par un autre.

Diagrame de Minkowski, dilatation temporelle. Source : http://data.abuledu.org/URI/50ad7fd2-diagrame-de-minkowski-dilatation-temporelle

Diagrame de Minkowski, dilatation temporelle

Dilatation temporelle : les deux observateurs considèrent que le temps passe plus lentement dans l'autre référentiel. Selon la théorie de la relativité restreinte, une horloge animée d'une certaine vitesse par rapport à un référentiel qualifié de fixe sera observée comme battant le temps à un rythme plus lent que celui des horloges de ce référentiel. Cette constatation est réciproque, c'est-à-dire que l'horloge dans le repère "fixe" sera également observée comme plus lente que celles du référentiel en mouvement, à partir de ce dernier référentiel, ce qui semble à première vue paradoxal. Ceci peut être visualisé avec un diagramme de Minkowski. Pour un observateur en A, le temps "simultané" de l'autre référentiel est le temps en B qui est inférieur à A. L'observateur en A peut donc logiquement conclure que le temps se passe plus lentement dans l'autre référentiel. Réciproquement, pour un observateur en B, le temps « simultané » de l'autre référentiel est en C, qui est inférieur à B, et observe également un ralentissement du temps dans l'autre référentiel.

Einstein en 1921. Source : http://data.abuledu.org/URI/50b2326d-einstein-en-1921

Einstein en 1921

Portrait d'Albert Einstein (1879-1955) donnant une conférence à Vienne en 1921. Il publie sa théorie de la relativité restreinte en 1905, et une théorie de la gravitation dite relativité générale en 1915. Il contribue largement au développement de la mécanique quantique et de la cosmologie, et reçoit le prix Nobel de physique de 1921 pour son explication de l’effet photoélectrique. Son travail est notamment connu pour l’équation E=mc2, qui établit une équivalence entre la matière et l’énergie d’un système.

Minkowski, messages vers le passé. Source : http://data.abuledu.org/URI/50ad8096-minkowski-messages-vers-le-passe

Minkowski, messages vers le passé

Émission d'un message vers le passé, à une vitesse supraluminique, de S à M' via O'. Description de la contradiction à laquelle on aboutit quand on transmet des signaux plus vite que la lumière (émission de signaux dans son propre passé). Adapté de David Bohm, "The Special Theory of Relativity" p. 121. Le diagramme de Minkowski permet de mettre en évidence les contradictions et paradoxes qui interviennent à partir du moment où on postule qu'une information peut se propager à une vitesse supérieure à celle de la lumière. Notamment, il serait possible dans ces conditions de transmettre une information dans son propre passé.

Relativité restreinte, choc élastique. Source : http://data.abuledu.org/URI/50b222ee-relativite-restreinte-choc-elastique

Relativité restreinte, choc élastique

Collision élastique entre deux particules de même masse. Dans un accélérateur de particules il arrive qu'une particule de très haute énergie heurte une particule au repos et communique à cette dernière une partie de son énergie cinétique. Si les seuls échanges d'énergie concernent précisément cette énergie cinétique (conservation de la quantité de mouvement du système), on dit que le choc est élastique. Les formules traduisant la conservation du quadrivecteur du système formé par ces deux particules permet d'analyser la collision. En mécanique newtonienne la direction des deux particules après un choc forme un angle droit. Ce qui n'est pas le cas dans le cas des chocs entre particules relativistes où leurs directions forment un angle aigu. Ce phénomène est parfaitement visible sur les enregistrements de collisions effectués dans des chambres à bulles. Considérons un électron de masse m et d'énergie très élevée frappant un autre électron intialement au repos. Les vecteurs impulsions des deux particules sont tracés sur la figure ci-contre. Avant le choc l'impulsion de l'électron incident est vec{p}. Après le choc, les impulsions des deux électrons sont vec{p}_1 et vec{p}_2.

Relativité restreinte, gerbe de rayons cosmiques. Source : http://data.abuledu.org/URI/50b22499-gerbe-png

Relativité restreinte, gerbe de rayons cosmiques

"Gerbe de rayons cosmiques", traduction de "Extended Air Shower": cascade de particules atmosphériques déclenchée par un proton incident. On détecte en astronomie des particules porteuses d'une énergie colossale : les rayons cosmiques. Bien que leur mécanisme de production demeure encore mystérieux, on peut mesurer leur énergie. Les nombres considérables que l'on obtient montrent que leur analyse exige l'emploi des formules de la relativité restreinte. Les rayons cosmiques fournissent donc une illustration idéale de la théorie d'Einstein. On détecte des particules jusqu'à des énergies invraisemblables de l'ordre de 1020 électron-volts, soit cent millions de TeV. Supposons donc qu'un rayon cosmique soit un proton de 1020 eV. Quelle est la vitesse de cette particule ? la vitesse du proton considéré est quasiment égale à la vitesse de la lumière. Elle n'en diffère que par moins de 10-22 (mais ne peut en aucun cas l'égaler). Voyons ce que ces chiffres impliquent pour les facteurs relativistes existant entre le référentiel propre de la particule et le référentiel terrestre. Notre propre Galaxie, de diamètre environ cent mille années-lumière est traversée par la lumière en cent mille ans. Par conséquent pour un observateur terrestre le proton traverse cette Galaxie dans le même temps. L'extraordinaire c'est que dans le référentiel du proton relativiste, le temps correspondant est 1011 fois plus faible, et vaut donc 30 secondes (une année fait 3×107 secondes) ! Notre proton ultra-relativiste et ultra-énergétique traverse notre Galaxie en 30 secondes de son temps propre mais en 100 000 ans de notre temps terrestre. Lorsque ce rayon cosmique heurte un atome d'oxygène ou d'azote de l'atmosphère terrestre à une altitude de l'ordre de 20 à 50 kilomètres au-dessus du sol, une gerbe de particules élémentaires se déclenche contenant en particulier des muons. Une partie d'entre eux se dirigent vers le sol avec une vitesse pratiquement égale à celle de la lumière, de 300 000 kilomètres par seconde dans le référentiel terrestre. Ces particules traversent donc les quelque 30 kilomètres d'atmosphère en 10-4 seconde (ou 100 microsecondes).

Satellite GPB. Source : http://data.abuledu.org/URI/50c3ad14-satellite-gpb-

Satellite GPB

Image artistique du satellite "Gravity Probe B" en orbite autour de la Terre pour mesurer l'effet espace-temps. L'idée de recourir à un satellite pour vérifier certains aspects de la théorie de la Relativité générale remontent au début de l'ère spatiale. "Gravity Probe B" est une mission de la NASA développée avec le département de physique de l'université Stanford aux États-Unis, et la compagnie Lockheed Martin comme premier sous-contractant. Cette mission est la deuxième expérience de physique fondamentale portant sur la gravité dans l'espace, après "Gravity Probe A" (GP-A) en 1976. L'effet de précession géodétique ou effet de Sitter découle de la courbure de l'espace-temps créée par le champ gravitationnel d'un objet. Dans le cas d'un objet placé sur une orbite à 640 km d'altitude cet effet induit une rotation de 6,6 secondes d'arc par an. Cet effet a déjà été vérifié notamment à travers l'influence de la Terre sur la Lune avec une précision de 1%.