Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Géométrie | Dessins et plans | Triangles (géométrie) | Triangle | Photographie | Polygones | Clip art | Parallèles (géométrie) | Solides | Cercles | Polyèdres | Thalès, Théorème de | Cercles du triangle | Puissances (algèbre) | Points (géométrie) | Puissances | Sphère | Théorème de Pythagore | Constructions géométriques | rectangles | ...
Projection axonométrique. Source : http://data.abuledu.org/URI/50e7fce4-projection-axonometrique

Projection axonométrique

Principe de l'axonométrie : le pavé se projette sur le plan Π' selon la direction S, l'image obtenue est une perspective axonométrique du pavé.

Projection orthogonale. Source : http://data.abuledu.org/URI/50e826a7-projection-orthogonale

Projection orthogonale

La projection orthogonale est un type de perspective très utilisée en dessin (géométrie descriptive), et en infographie : la génération des figures est simple, par contre, on ne peut pas représenter l'éloignement (la taille des objets ne varie pas avec la distance). De manière plus générale, en algèbre linéaire, une projection orthogonale est un projecteur tel que les deux sous-espaces sont orthogonaux. La projection orthogonale permet de résoudre le problème de la plus courte distance d'un point à une droite, d'un point à un plan, ou plus généralement d'un point à un sous-espace affine d'un espace euclidien d'autre part. On peut alors utiliser ce concept pour résoudre des problèmes de type «moindres carrés». L'idée générale, basée sur le théorème de Pythagore, est que le problème de plus courte distance se ramène à une propriété d'orthogonalité.

Puissance d'un point. Source : http://data.abuledu.org/URI/5184c38b-puissance-d-un-point

Puissance d'un point

En géométrie euclidienne du plan, la puissance d'un point P par rapport à un cercle de centre O et de rayon R est un nombre qui indique la position de P par rapport à ce cercle.

Puissance d'un point. Source : http://data.abuledu.org/URI/5184c455-puissance-d-un-point

Puissance d'un point

Détermination de la valeur algébrique de la puissance d'un point extérieur à un cercle. En géométrie euclidienne du plan, la puissance d'un point P par rapport à un cercle de centre O et de rayon R est un nombre qui indique la position de P par rapport à ce cercle.

Puissance d'un point intérieur à un cercle. Source : http://data.abuledu.org/URI/5184c543-puissance-d-un-point-interieur-a-un-cercle

Puissance d'un point intérieur à un cercle

Détermination de la valeur algébrique de la puissance d'un point intérieur à un cercle : PAxPB = (r+d) (r-d).

Pyramide. Source : http://data.abuledu.org/URI/51fc2059-pyramide

Pyramide

Pyramide avec apex et base.

Pyramide. Source : http://data.abuledu.org/URI/51fc20da-pyramide

Pyramide

Pyramide géométrique vue en perspective. Ce sont les Grecs qui ont introduit le nom de « pyramide », comparant les pyramides d'Égypte avec une de leurs pâtisseries de forme similaire appelée « pyramis » ou « pyramous ».

Rapporteur. Source : http://data.abuledu.org/URI/47f3d3f3-file-rapporteur-svg

Rapporteur

Schéma d'un rapporteur (à imprimer sur une feuille transparente par exemple) afin de mesurer des angles. Les valeurs sont en degrés. Une attention particulière a été portée à la position des traits afin qu'ils soient bien centrés par rapport à la position de l'angle qu'ils décrivent.

Rapporteur. Source : http://data.abuledu.org/URI/502787f4-rapporteur
Rapporteur. Source : http://data.abuledu.org/URI/517932d9-rapporteur

Rapporteur

Un rapporteur (ou rapporteur d'angle) est un outil utilisé en géométrie pour mesurer des angles et pour construire des figures géométriques.

Rapporteur. Source : http://data.abuledu.org/URI/52acc4df-rapporteur

Rapporteur

Rapporteur gradué.

Réciproque du théorème de Thalès. Source : http://data.abuledu.org/URI/50c50076-reciproque-du-theoreme-de-thales

Réciproque du théorème de Thalès

Le théorème des milieux est un cas particulier de la réciproque du théorème de Thalès. Si un segment a pour extrémités les milieux de deux côtés d’un triangle, alors il est parallèle au troisième côté, et sa longueur est égale à la moitié de celle de ce troisième côté. Soient I et J les milieux respectifs des segments [AB] et [AC], alors (IJ) // (BC) et IJ = BC ÷ 2.

Rectangle. Source : http://data.abuledu.org/URI/5023eb3e-rectangle

Rectangle

Un rectangle bleu

Rectangle d'or. Source : http://data.abuledu.org/URI/5023eef1-rectangle-d-or

Rectangle d'or

Tracé d'un rectangle d'or et divine proportion.

Rectangle definition. Source : http://data.abuledu.org/URI/5023ede2-rectangle-definition

Rectangle definition

Rectangle avec angles droits symbolisés

Sablé de Lincoln. Source : http://data.abuledu.org/URI/522df712-sable-de-lincoln

Sablé de Lincoln

Sablé de Lincoln : dessin de points concentriques.

Sinusoïde. Source : http://data.abuledu.org/URI/5309d16a-sinusoide

Sinusoïde

Sinusoïde, représentation graphique de la fonction cosinus.

Somme des carrés. Source : http://data.abuledu.org/URI/529c3f36-somme-des-carres

Somme des carrés

Un exemple de preuve sans mots à propos de la somme des premiers carrés : chacune des trois pyramides a pour volume la somme des carrés de 1 à n (n=4 dans cette illustration) ; le parallélépipède final est de côtés n, n+1 et n+1/2. Ce résultat se généralise pour la somme des n premières puissances strictement positives. Cette somme porte le nom de formule de Faulhaber. Johann Faulhaber (1580-1635) est un mathématicien allemand qui collabora avec Kepler.

Sphère. Source : http://data.abuledu.org/URI/518447c2-sphere

Sphère

Sphère.

Sphère bleue. Source : http://data.abuledu.org/URI/5184476d-sphere-bleue

Sphère bleue

Sphère bleue.

Statue d'Euclide. Source : http://data.abuledu.org/URI/505b6213-statue-d-euclide

Statue d'Euclide

Photographie de la Statue d'Euclide au Musée Universitaire d'Histoire Naturelle à 0xford (Angleterre). En grec ancien Εὐκλείδης Eukleidês (mort à Alexandrie) est un mathématicien de la Grèce antique, auteur des Éléments, qui sont considérés comme l'un des textes fondateurs des mathématiques. La géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.

Tachéomètre. Source : http://data.abuledu.org/URI/50e6e57a-tacheometre

Tachéomètre

Théodolite DTM-A20 (face arrière - cercle à gauche) : Depuis les années 1950 et 1960, les techniques de relevés topographiques évoluent. Avec l'invention des distancemètres électroniques, le théodolite électronique ou le tachéomètre, permettent à la fois de mesurer les distances et les angles. Jusque là, la mesure des distances se faisait à l'aide de rubans gradués (dits chaînes d'arpenteurs) : ces inventions constituent donc une évolution très significative dans le travail des topographes de terrain, presque une révolution.

Théorème d'Apollonius. Source : http://data.abuledu.org/URI/50c4ff8e-theoreme-d-apollonius

Théorème d'Apollonius

Le théorème de la médiane, ou théorème d'Apollonius, est une relation entre la longueur d'une médiane d'un triangle et la longueur de ses côtés : si S est le centre du parallélogramme, alors 2NS^2 + frac 12 MP^2 = NM^2+NP^2 2NS^2 =frac 12 NM^2+NP^2 NQ^2=NM^2+2NP^2 . Apollonios de Perga ou Apollonius de Perge (en grec ancien Ἀπολλώνιος / Apollốnios, v. 262 – v. 190 av. J.-C.) était un géomètre et astronome grec. Il serait originaire de Pergé (ou Perga, ou encore Pergè actuelle Aksu en Turquie).

Théorème de la médiane. Source : http://data.abuledu.org/URI/50c501b4-theoreme-de-la-mediane

Théorème de la médiane

Médiane et hauteur d'un triangle. Le théorème de la médiane, ou théorème d'Apollonius, est une relation entre la longueur d'une médiane d'un triangle et la longueur de ses côtés. Soit ABC un triangle quelconque, et AI la médiane issue de A. On a alors la relation suivante : AB^2 + AC^2 = 2BI^2 + 2AI^2, Ou encore : AB^2 + AC^2 = {1 over 2} BC^2 + 2AI^2.

Théorème de Stewart. Source : http://data.abuledu.org/URI/50c504eb-theoreme-de-stewart

Théorème de Stewart

En géométrie euclidienne, le théorème de Stewart est une généralisation du théorème de la médiane, due au mathématicien Matthew Stewart dans les années 1746 : Théorème — Soit p une cévienne d'un triangle ABC divisant en X le côté a en deux parties x et y. On a alors la relation suivante : acdot (xy+p^{2}) = xcdot b^{2}+ycdot c^{2}. Matthew Stewart est un mathématicien écossais (1717-1785) reconnu comme un mathématicien important après la publication de son "General Theorems", en 1746.

Théorème de Thalès. Source : http://data.abuledu.org/URI/505ec4c9-theoreme-de-thales

Théorème de Thalès

Illustration du théorème de Thalès : droites parallèles (en rouge).

Théorème de Thalès. Source : http://data.abuledu.org/URI/505ed490-theoreme-de-thales

Théorème de Thalès

Illustration géométrique du théorème de Thalès : droites parallèles.

Théorème spectral. Source : http://data.abuledu.org/URI/529935e9-theoreme-spectral

Théorème spectral

Représentation de la sphère unité en dimension trois pour deux distances euclidiennes. La sphère rouge représente la sphère unité pour la première forme, la figure bleue représente la sphère unité pour la deuxième forme dans la mesure où celle-ci est définie positive. La figure bleue est un ellipsoïde dont les axes sont orthogonaux pour la première forme. La distance d'origine est définie par la sphère rouge et celle de la quadrique associée à Ψ, par l'ellipsoïde bleu. Il existe alors une base qui respecte l'orthogonalité des deux formes quadratiques. Si l'orthogonalité est respectée, il n'en est pas de même pour les longueurs. Ainsi, le vecteur unitaire de l'axe des x pour la distance originale (en rouge) est de longueur plus petite pour la nouvelle distance (en bleu), d'où la nécessité d'un coefficient s1 pour passer d'une distance à l'autre.

Trace d'une perpendiculaire avec la méthode du 3 4 5. Source : http://data.abuledu.org/URI/52ac8562-trace-d-une-perpendiculaire-avec-la-methode-du-3-4-5

Trace d'une perpendiculaire avec la méthode du 3 4 5

Tracé d'une perpendiculaire en maçonnerie, méthode du 3-4-5 : le triangle est rectangle (théorème de Pythagore).

Tracer une parallèle avec une règle et une équerre. Source : http://data.abuledu.org/URI/52ac6b6f-tracer-une-parallele-avec-une-regle-et-une-equerre

Tracer une parallèle avec une règle et une équerre

Métode pour tracer une parallèle avec une règle et une équerre. On prend une équerre et l'on appuie un côté sur la droite de référence. On place une règle contre un autre côté de l'équerre. Puis, on appuie fermement sur la règle, et l'on fait glisser l'équerre contre la règle sans appuyer sur l'équerre, ceci afin d'éviter de faire bouger la règle. Source : Mécanique pour l'enseignement technique industriel/Éléments de géométrie (fr.wikiversity.org ).

Trapézoèdre décagonal. Source : http://data.abuledu.org/URI/50c483ce-trapezoedre-decagonal

Trapézoèdre décagonal

Trapézoèdre décagonal.

Trapézoèdre hexagonal. Source : http://data.abuledu.org/URI/50c482ad-trapezoedre-hexagonal

Trapézoèdre hexagonal

Trapézoèdre hexagonal. La partie n-gonale du nom ne fait pas référence aux faces mais à l'arrangement des sommets autour d'un axe de symétrie. L'antiprisme dual n-gonal possède deux faces n-gonales. Un trapézoèdre n-gonal peut être décomposé en deux pyramides n-gonales égales et un antiprisme n-gonal.

Trapézoèdre octagonal. Source : http://data.abuledu.org/URI/50c48317-trapezoedre-octagonal

Trapézoèdre octagonal

Trapézoèdre octogonal.

Trapézoèdre tétragonal. Source : http://data.abuledu.org/URI/50c47bf9-trapezoedre-tetragonal

Trapézoèdre tétragonal

En géométrie, un octaèdre (du grec oktô, huit et hedra, face) est un polyèdre à huit faces. Certains octaèdres satisfont des conditions de symétrie ou de régularité des faces, par exemple le trapézoèdre tétragonal. Le nom trapézoèdre est trompeur puisque les faces ne sont pas des trapèzes. Le trapézoèdre ou antidiamant ou deltoèdre n-gonal est le polyèdre dual d'un antiprisme n-gonal régulier. Ses 2n faces sont des deltoïdes congrus (ou cerfs-volants). Les faces sont décalées symétriquement.

Triangle. Source : http://data.abuledu.org/URI/503d3b06-triangle-png

Triangle

Dessin d'un triangle

Triangle. Source : http://data.abuledu.org/URI/5180c60e-triangle

Triangle

Un triangle scalène : un triangle qui n'est ni isocèle (ce qui exclut également le cas équilatéral) ni plat est dit scalène (du grec σκαληνός (skalenos) : boiteux, inégal, déséquilibré, oblique...) Il s'agit donc d'un triangle ayant trois côtés de longueurs différentes, trois angles de mesures différentes et aucun axe de symétrie.

Triangle d'or. Source : http://data.abuledu.org/URI/5180c7aa-triangle-d-or

Triangle d'or

Le triangle d'or est un triangle isocèle dont les angles à la base valent deux cinquièmes de l'angle plat, soit 72° ;

Triangle ecolier. Source : http://data.abuledu.org/URI/5180c913-triangle-ecolier

Triangle ecolier

Le triangle de l'écolier ou triangle hémi-équilatéral est un triangle rectangle dont les mesures des angles sont de 30°, 60° et 90° .

Triangle equilateral. Source : http://data.abuledu.org/URI/5180c725-triangle-equilateral

Triangle equilateral

Un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles ont alors la même mesure qui vaut donc 60° et il admet trois axes de symétrie.

Triangle isocele. Source : http://data.abuledu.org/URI/5180c6c3-triangle-isocele

Triangle isocele

Un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Les deux angles adjacents au troisième côté sont alors de même mesure. Réciproquement, tout triangle ayant deux angles de même mesure est isocèle. Les triangles isocèles sont les seuls à admettre un axe de symétrie en dehors des triangles plats.

Triangle rectangle. Source : http://data.abuledu.org/URI/51857259-triangle-rectangle

Triangle rectangle

Triangle rectangle. Traduction en français Christophe Catarina.

Triangle rectangle. Source : http://data.abuledu.org/URI/5185731f-triangle-rectangle

Triangle rectangle

Triangle rectangle : Dans un triangle rectangle, l'hypoténuse (AB) est le côté non adjacent à l'angle droit, ou le côté opposé à l'angle droit (en C).

Triangle rectangle. Source : http://data.abuledu.org/URI/51e063be-triangle-rectangle

Triangle rectangle

Triangle rectangle.

Triangle rectangle. Source : http://data.abuledu.org/URI/52ac82eb-triangle-rectangle

Triangle rectangle

Triangle ABC rectangle en C. Le côté le plus long d'un triangle rectangle est appelé "hypoténuse" (côté AB dans cette image), les deux autres sont les "côtés de l'angle droit". Le théorème de Pythagore énonce, avec les notation du dessin ci-contre, que AB2 = AC2 + BC2.

Triangle rectangle. Source : http://data.abuledu.org/URI/52ac8627-triangle-rectangle

Triangle rectangle

Triangle rectangle en C dont les côtés sont légendés en français : AB = Hypothénuse ; AC = Côté adjacent à l'angle A ; BC = Côté opposé à l'angle A.

Uxmal. Source : http://data.abuledu.org/URI/518432d7-uxmal

Uxmal

Bâtiments de l'ancienne ville d'Uxmal, au Mexique. Le bâtiment du devant est le Quadrilatère des Nonnes et présente les caractéristiques du style Maya de la période Puuc : La mosaïque de pierres et l'importance de Chac, dieu des eaux etdes pluies. On peut voir trois grands masques du dieu au dessus de la porte de droite. En arrière et au dessus, on peut voir la La Pyramide du Devin, l'une des rares pyramides ovales du monde Maya. Sur la pyramide, deux portes sont visibles, la plus basse richement décorée avec des motifs liés à Chac, et la plus haute ayant d'autres motifs Puuc. Au dessus de la porte de gauche, on voit des hauts parleurs utilisés pour des spectacles son et lumière.

Vitrail moderne à Issy-les-Moulineaux. Source : http://data.abuledu.org/URI/52da6624-vitrail-moderne-a-issy-les-moulineaux

Vitrail moderne à Issy-les-Moulineaux

Vitrail de la Trinité à Issy les Moulineaux, le fils, par Carlo Roccella (né en 1956). Source : http://fr.wikipedia.org/wiki/Carlo_Roccella

Vraie Grandeur de droite. Source : http://data.abuledu.org/URI/51a5acd0-vraie-grandeur-de-droite

Vraie Grandeur de droite

Vraie grandeur d'une droite obtenue avec la technique dite du changement de plan.