Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Carré | Formes (mathématiques) | Personnages imaginaires | Odysseus | Géométrie | Humour | Falaises | Mathématiciens | Jeux mathématiques | Carrés magiques | Onomatopées | Cercles | Pentes et versants | Colère | Relations amoureuses | Dessin en noir et blanc | Collines | Calcul | Sauts (athlétisme) | ...
Carré blanc. Source : http://data.abuledu.org/URI/50218a31-carre-blanc

Carré blanc

Carré blanc avec une bordure noire / White square with a solid black border.

Carré d'un nombre triangulaire. Source : http://data.abuledu.org/URI/529c3dfd-carre-d-un-nombre-triangulaire

Carré d'un nombre triangulaire

Démonstration géométrique de la formule donnant le carré d'un nombre triangulaire, égal à la somme des premiers cubes parfaits : le carré du nième nombre triangulaire est égal à la somme des n premiers cubes. L'illustration géométrique permet de se convaincre de la véracité de ses propositions. L'aire de la zone orange de la figure est appelée nombre gnomonique. Elle est constituée de deux rectangles de base 4 et de côté le nombre triangulaire d'indice 4, c'est-à-dire 10. Ces deux rectangles se recoupent sur un carré de côté 4, on en déduit que l'aire orange est égale à 5 x 4 x 4 - 4 x 4, ou encore 43. Ce raisonnement est valable sur chaque nombre gnomonique, l'aire du carré de côté le nombre triangulaire d'indice 4 est égal la somme des 4 premiers cubes. De cette démonstration d'Al-Karaji, on déduit la première proposition.

Carrés géométriques. Source : http://data.abuledu.org/URI/52993272-carres-geometriques

Carrés géométriques

Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 : chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2×1/2 = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré.

Dernière tentative de saut d'Hervé le carré. Source : http://data.abuledu.org/URI/54ac748f-derniere-tentative-de-saut-d-herve-le-carre

Dernière tentative de saut d'Hervé le carré

Dernière tentative de saut d'Hervé le carré, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé fait la roulade. Source : http://data.abuledu.org/URI/54ac7784-herve-fait-la-roulade

Hervé fait la roulade

Hervé fait la roulade, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé l'ex-carré et Cléandre l'ex-ronde s'expliquent. Source : http://data.abuledu.org/URI/54adc85e-herve-l-ex-carre-et-cleandre-l-ex-ronde-s-expliquent

Hervé l'ex-carré et Cléandre l'ex-ronde s'expliquent

Hervé l'ex-carré et Cléandre l'ex-ronde s'expliquent, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé l'ex-carré retrouve Cléandre l'ex-ronde. Source : http://data.abuledu.org/URI/54adc7d2-herve-l-ex-carre-retrouve-cleandre-l-ex-ronde

Hervé l'ex-carré retrouve Cléandre l'ex-ronde

Hervé l'ex-carré retrouve Cléandre l'ex-ronde, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré. Source : http://data.abuledu.org/URI/54aaaa60-herve-le-carre-

Hervé le carré

Hervé le carré, héros de "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré a le coeur brisé. Source : http://data.abuledu.org/URI/54aaf56c-herve-le-carre-a-le-coeur-brise

Hervé le carré a le coeur brisé

Hervé le carré a le coeur brisé, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré a perdu tous ses angles. Source : http://data.abuledu.org/URI/54adc630-herve-le-carre-a-perdu-tous-ses-angles

Hervé le carré a perdu tous ses angles

Hervé le carré a perdu tous ses angles, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré a une idée pour s'arrondir. Source : http://data.abuledu.org/URI/54ac76b4-herve-le-carre-a-une-idee-pour-s-arrondir

Hervé le carré a une idée pour s'arrondir

Hervé le carré a une idée pour s'arrondir, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré arrive en bas de la pente. Source : http://data.abuledu.org/URI/54adc5be-herve-le-carre-arrive-en-bas-de-la-pente

Hervé le carré arrive en bas de la pente

Hervé le carré arrive en bas de la pente, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré atterrit en bas de la pente. Source : http://data.abuledu.org/URI/54ab0c0c-herve-le-carre-atterrit-en-bas-de-la-pente

Hervé le carré atterrit en bas de la pente

Hervé le carré atterrit en bas de la pente, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré au sommet de la colline. Source : http://data.abuledu.org/URI/54aaf838-herve-le-carre-au-sommet-de-la-colline

Hervé le carré au sommet de la colline

Hervé le carré au sommet de la colline, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré décide de s'arrondir. Source : http://data.abuledu.org/URI/54aaf6db-herve-le-carre-decide-de-s-arrondir

Hervé le carré décide de s'arrondir

Hervé le carré décide de s'arrondir, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré est furieux. Source : http://data.abuledu.org/URI/54ab14b9-herve-le-carre-est-furieux

Hervé le carré est furieux

Hervé le carré est furieux, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré est inquiet. Source : http://data.abuledu.org/URI/54ab129d-herve-le-carre-est-inquiet

Hervé le carré est inquiet

Hervé le carré est inquiet, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré est perplexe. Source : http://data.abuledu.org/URI/54ab118e-herve-le-carre-est-perplexe

Hervé le carré est perplexe

Hervé le carré est perplexe, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré est surpris. Source : http://data.abuledu.org/URI/54adc750-herve-le-carre-est-surpris

Hervé le carré est surpris

Hervé le carré est surpris, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré est triste. Source : http://data.abuledu.org/URI/54aaf688-herve-le-carre-est-triste

Hervé le carré est triste

Hervé le carré est triste, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré et Cléandre la ronde se retrouvent. Source : http://data.abuledu.org/URI/54adc9da-herve-le-carre-et-cleandre-la-ronde-se-retrouvent

Hervé le carré et Cléandre la ronde se retrouvent

Hervé le carré et Cléandre la ronde se retrouvent, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré et la colline du Trapèze. Source : http://data.abuledu.org/URI/54aaf768-herve-le-carre-et-la-colline-du-trapeze

Hervé le carré et la colline du Trapèze

Hervé le carré et la colline du Trapèze, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré glisse le long de la pente. Source : http://data.abuledu.org/URI/54ab0b6b-herve-le-carre-glisse-le-long-de-la-pente

Hervé le carré glisse le long de la pente

Hervé le carré glisse le long de la pente, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré hésite. Source : http://data.abuledu.org/URI/54ab1322-herve-le-carre-hesite

Hervé le carré hésite

Hervé le carré hésite, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré réfléchit avant de sauter. Source : http://data.abuledu.org/URI/54ac72b3-herve-le-carre-reflechit-avant-de-sauter

Hervé le carré réfléchit avant de sauter

Hervé le carré réfléchit avant de sauter, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré rencontre Cléandre la ronde. Source : http://data.abuledu.org/URI/54aaf43a-herve-le-carre-rencontre-cleandre-la-ronde

Hervé le carré rencontre Cléandre la ronde

Hervé le carré rencontre Cléandre la ronde, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré roule le long de la pente. Source : http://data.abuledu.org/URI/54adc526-herve-le-carre-roule-le-long-de-la-pente

Hervé le carré roule le long de la pente

Hervé le carré roule le long de la pente, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré s'écrase au sol. Source : http://data.abuledu.org/URI/54ab1463-herve-le-carre-s-ecrase-au-sol

Hervé le carré s'écrase au sol

Hervé le carré s'écrase au sol, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré s'écrase au sol. Source : http://data.abuledu.org/URI/54ac75d7-herve-le-carre-s-ecrase-au-sol

Hervé le carré s'écrase au sol

Hervé le carré s'écrase au sol, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré s'écrase au sol et s'aplatit. Source : http://data.abuledu.org/URI/54ac7194-herve-le-carre-s-ecrase-au-sol-et-s-aplatit

Hervé le carré s'écrase au sol et s'aplatit

Hervé le carré s'écrase au sol et s'aplatit, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré s'est arrondi. Source : http://data.abuledu.org/URI/54adc6f4-herve-le-carre-s-est-arrondi

Hervé le carré s'est arrondi

Hervé le carré s'est arrondi, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré s'est transformé en parallélogramme. Source : http://data.abuledu.org/URI/54ac7230-herve-le-carre-s-est-transforme-en-parallelogramme

Hervé le carré s'est transformé en parallélogramme

Hervé le carré s'est transformé en parallélogramme, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré s'est transformé en pentagone. Source : http://data.abuledu.org/URI/54ac7638-herve-le-carre-s-est-transforme-en-pentagone

Hervé le carré s'est transformé en pentagone

Hervé le carré s'est transformé en pentagone, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré saute. Source : http://data.abuledu.org/URI/54ab0a4b-herve-le-carre-saute

Hervé le carré saute

Hervé le carré saute, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré saute à la verticale. Source : http://data.abuledu.org/URI/54ac7311-herve-le-carre-saute-a-la-verticale

Hervé le carré saute à la verticale

Hervé le carré saute à la verticale, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré saute dans le vide. Source : http://data.abuledu.org/URI/54ab13df-herve-le-carre-saute-dans-le-vide

Hervé le carré saute dans le vide

Hervé le carré saute dans le vide, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré saute en hurlant. Source : http://data.abuledu.org/URI/54ac7521-herve-le-carre-saute-en-hurlant

Hervé le carré saute en hurlant

Hervé le carré saute en hurlant, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré saute pour la seconde fois. Source : http://data.abuledu.org/URI/54ab152f-herve-le-carre-saute-pour-la-seconde-fois

Hervé le carré saute pour la seconde fois

Hervé le carré saute pour la seconde fois, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré se précipite dans le vide. Source : http://data.abuledu.org/URI/54ab160a-herve-le-carre-se-precipite-dans-le-vide

Hervé le carré se précipite dans le vide

Hervé le carré se précipite dans le vide, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré se promène en Angle-Terre. Source : http://data.abuledu.org/URI/54aaab2a-herve-le-carre-se-promene-en-angle-terre

Hervé le carré se promène en Angle-Terre

Hervé le carré se promène en Angle-Terre, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré se transforme en losange. Source : http://data.abuledu.org/URI/54ac7392-herve-le-carre-se-transforme-en-losange

Hervé le carré se transforme en losange

Hervé le carré se transforme en losange, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré tombe amoureux de Cléandre la ronde. Source : http://data.abuledu.org/URI/54aaf4f5-herve-le-carre-tombe-amoureux-de-cleandre-la-ronde

Hervé le carré tombe amoureux de Cléandre la ronde

Hervé le carré tombe amoureux de Cléandre la ronde, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé revient à la colline du trapèze. Source : http://data.abuledu.org/URI/54ac770e-herve-revient-a-la-colline-du-trapeze

Hervé revient à la colline du trapèze

Hervé revient à la colline du trapèze, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Jeu mathématique avec des dominos. Source : http://data.abuledu.org/URI/533ab764-jeu-mathematique-avec-des-dominos

Jeu mathématique avec des dominos

Un des carrés possibles du jeu de Yakov Perelman (1882-1942), professeur russe : quatre dominos formant un carré sont disposés de façon à ce que le nombre de points de chacun des cotés soit identique.

Le carré de Sierpinski. Source : http://data.abuledu.org/URI/5183f2e8-le-carre-de-sierpinski

Le carré de Sierpinski

Le tapis de Sierpiński (1916), du nom de Wacław Sierpiński (1882-1969), est une fractale obtenue à partir d'un carré. Le tapis se fabrique en découpant le carré en neuf carrés égaux avec une grille de trois par trois, et en supprimant la pièce centrale, et en appliquant cette procédure indéfiniment aux huit carrés restants.

Mandala à colorier. Source : http://data.abuledu.org/URI/53313bc5-mandala-a-colorier

Mandala à colorier

Mandala à colorier.

Mandala de Sable 03. Source : http://data.abuledu.org/URI/529e54da-mandala-de-sable-03

Mandala de Sable 03

Premier jour de la réalisation d'un mandala de sable "Pour la paix dans le monde", par trois lamas du temple des Mille Bouddhas, à la Tour de la Liberté de Saint-Dié-des-Vosges, les 11, 12 et 13 avril 2008 : le carré et ses quatre portes, le cercle central.

Mandala de Vajradhatu. Source : http://data.abuledu.org/URI/529e320a-mandala-de-vajradhatu

Mandala de Vajradhatu

Mandala de Vajradhatu (boudhisme tibétain) du XIXème siècle : forme de base carrée avec quatre portes d'entrée, contenant un cercle et un centre (symétrie centrale).

Nombre pyramidal carré 30. Source : http://data.abuledu.org/URI/529c3fd6-nombre-pyramidal-carre-30

Nombre pyramidal carré 30

Représentation graphique du nombre pyramidal carré 30 = 1²+2²+3²+4² = 1+4+9+16.

Nombres trangulaires. Source : http://data.abuledu.org/URI/529c3b00-nombres-trangulaires

Nombres trangulaires

La somme de deux nombres triangulaires consécutifs forme un carré parfait.

Cadeau carré. Source : http://data.abuledu.org/URI/5628d8d9-cadeau-carre

Cadeau carré

Cadeau de Noël carré posé un pied du sapin de Chloé.

Cahier à dos carré collé. Source : http://data.abuledu.org/URI/531c6700-cahier-a-dos-carre-colle

Cahier à dos carré collé

Le dos carré collé avant de poser la couverture du cahier d'une brochure : livres de poche fraisés et encollés au dos reliure sans couture, dos carré collé.

Carré magique. Source : http://data.abuledu.org/URI/52f56658-carre-magique

Carré magique

Carré magique normal d’ordre 3 et de constante magique 15. En mathématiques, un carré magique d’ordre n est composé de n^{2} nombres entiers, écrits sous la forme d’un tableau carré. Ces nombres sont disposés de sorte que leurs sommes sur chaque rangée, sur chaque colonne et sur chaque diagonale principale soient égales. On nomme alors constante magique (et parfois densité) la valeur de ces sommes.

Carré magique selon Moschopoulos. Source : http://data.abuledu.org/URI/52f56bce-carre-magique-selon-moschopoulos

Carré magique selon Moschopoulos

Un carré magique d'ordre 5 construit selon la méthode de Moschopoulos. La méthode de construction proposée par le Byzantin Manuel Moschopoulos, dite « parcours en cavalier d'échecs », se représente par le vecteur déplacement (1, 2) et le vecteur collision (1 + 1, 2 - 2) = (2, 0).

Carré violet. Source : http://data.abuledu.org/URI/503a5d60-carre-violet

Carré violet

Carré violet

Cléandre se déguise en carré. Source : http://data.abuledu.org/URI/54c6a43f-cleandre-se-deguise-en-carre

Cléandre se déguise en carré

Cléandre essaie de se déguiser en carré, par Cyri-L, janvier 2015 : l'héroïne de "Le carré qui voulait devenir rond" (Odysseus) est tombée amoureuse d'Hervé LeCarré. Comment lui plaire ?

Connectivité du carré. Source : http://data.abuledu.org/URI/50bc1cf7-connectivite-du-carre

Connectivité du carré

Dans le cadre des pavages, la connectivité géométrique indique la relation entre un élément de pavage (une case ou tuile) et ses voisins. On parlera de 4-connectivité lorsqu'une case (ici un carré) comporte 4 voisins directs.

Connectivité du carré. Source : http://data.abuledu.org/URI/50bc1e50-connectivite-du-carre

Connectivité du carré

Dans le cadre des pavages, la connectivité géométrique indique la relation entre un élément de pavage (une case ou tuile) et ses voisins. On parlera de 8-connectivité lorsqu'une case (ici un carré) comporte 8 voisins directs.

Construction d'un carré magique - 1. Source : http://data.abuledu.org/URI/52f569ab-construction-d-un-carre-magique-1

Construction d'un carré magique - 1

Construction d'un carré magique 5x5, méthode de Méziriac : Premières étapes de construction d'un carré magique d'ordre 5. Chaque diagonale allant de gauche à droite comporte un entier unique en ordre croissant. Ensuite, le contour du carré magique final est esquissé.

Construction d'un carré magique - 2. Source : http://data.abuledu.org/URI/52f56a23-construction-d-un-carre-magique-2

Construction d'un carré magique - 2

Dernières étapes de la construction d'un carré magique 5x5 selon la méthode de Méziriac.

Construction d'un carré magique par la méthode du losange - 1. Source : http://data.abuledu.org/URI/52f56d90-construction-d-un-carre-magique-par-la-methode-du-losange-1

Construction d'un carré magique par la méthode du losange - 1

Premières étapes de la construction d'un carré magique 5x5 par la méthode du losange proposée par John Horton Conway : 1) Les nombres impairs 1, 3 et 5 sont inscrits selon une diagonale montante qui va de gauche à droite ; 2) Les nombres pairs 2 et 4 sont ensuite inscrits pour compléter la diagonale brisée ; 3) « Descendre » à la prochaine diagonale ; 4) Recommencer avec les nombres suivants.

Construction d'un carré magique par la méthode du losange - 2. Source : http://data.abuledu.org/URI/52f56e81-construction-d-un-carre-magique-par-la-methode-du-losange-2

Construction d'un carré magique par la méthode du losange - 2

Un carré magique 5x5 construit selon la méthode du losange proposée par John Horton Conway : Le résultat final est un carré magique dont la constante est 65.

Construction d'un carré magique selon la méthode siamoise. Source : http://data.abuledu.org/URI/52f56b22-construction-d-un-carre-magique-selon-la-methode-siamoise

Construction d'un carré magique selon la méthode siamoise

Un carré magique d'ordre 5 avec un carré adjacent montrant des directions : construction d'un carré magique d'ordre impair selon la méthode siamoise. Dans cet exemple, le carré est rempli selon les diagonales nord-est (NE), mais elles pourraient être parallèles à sud-est (SE), à sud-ouest (SO) ou à nord-ouest (NO). 1) Placer le 1 tel que montré. 2) Décaler d'une case vers la droite puis d'une case vers le haut pour le 2, et ainsi de suite pour le 3, puis le 4, etc. 3) Si la pointe de la flèche sort du carré, revenir de l'autre côté, comme si le carré était enroulé sur un tore. 4) Si la prochaine case est occupée, décaler d'une case vers le bas. La méthode siamoise a été introduite en France par Simon de La Loubère en 1688 alors qu'il revenait de son ambassade au Siam. Source : http://fr.wikipedia.org/wiki/Carr%C3%A9_magique_%28math%C3%A9matiques%29.

Décor géométrique dans un carré. Source : http://data.abuledu.org/URI/5102ca63-decor-geometrique-dans-un-carre

Décor géométrique dans un carré

Décor géométrique dans un carré.

Hervé le carré est furieux de son échec. Source : http://data.abuledu.org/URI/54ac73fb-herve-le-carre-est-furieux-de-son-echec

Hervé le carré est furieux de son échec

Hervé le carré est furieux de son échec, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/

Hervé le carré rêve. Source : http://data.abuledu.org/URI/54aaf61b-herve-le-carre-reve

Hervé le carré rêve

Hervé le carré rêve, in "Le carré qui voulait devenir rond", histoire imaginée par Odysseus pour Noël 2014. Source : http://odysseuslibre.be/mondelibre/le-carre-qui-voulait-devenir-rond/