Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Physique | Culbuto | Jouets -- Design | Photographie | Jeux -- Matériel | Ramponneau | Poids (physique) | Méridiens | Transfert de quantité de mouvement | Transfert d'impulsion (mécanique) | Afrique | Transfert | Terre -- Rotation | Billard | Jeux de tables | Physique mécanique | Méridien de Greenwich | Institut géographique national. France | Minéraux | ...
Concorde : transfert de carburant. Source : http://data.abuledu.org/URI/50d5d8f7-concorde-transfert-de-carburant

Concorde : transfert de carburant

Le transfert de carburant : A : décollage, B : croisière, C : retour en subsonique. En plus de l’alimentation des réacteurs, le carburant remplit une autre fonction : il est utilisé pour le centrage. Après le passage du mur du son, l’équilibre aérodynamique est modifié, le centre de poussée recule. Pour compenser cet effet, le centre de gravité de l’appareil est déplacé vers l'arrière. Sur Concorde, la seule masse déplaçable est le carburant. Le transfert du carburant se fait de l’avant vers l’arrière pour le vol supersonique et le contraire pour le retour en subsonique comme sur le Dassault Mirage IV. Trois réservoirs situés dans le fuselage, deux à l’avant et un à l’arrière servaient principalement à cette fonction. Le transfert s’effectue par deux conduits dits « main gallery » entre les trois réservoirs. Pendant ces transferts, le déplacement du carburant est entendu en cabine. À Mach 0,93, transfert vers l’arrière du carburant, aux environs de Mach 1,2, début du transfert vers l’avant. Pendant l'avitaillement, la séquence de chargement du carburant permet de ne pas « poser » l’avion sur la roulette de queue. Une table des volumes des réservoirs permet de connaître la répartition du carburant. Sur cet avion, le carburant est également utilisé pour le refroidissement de l’air de conditionnement de la cabine.

Boule de démolition. Source : http://data.abuledu.org/URI/50cb1d31-boule-de-demolition

Boule de démolition

Boule de démolition : diagramme pour le calcul de l'énergie potentielle de gravité. L'énergie potentielle gravitationnelle est, comme toutes les formes d'énergies potentielles, définie à une constante additive arbitraire près. Néanmoins, il est d'usage de fixer la valeur de la constante en prenant la valeur de l'énergie potentielle nulle lorsque la masse est infiniment éloignée du centre de gravité du champ auquel elle est soumise. Dans ce cas-là, l'énergie potentielle gravitationnelle est négative. Cela signifie qu'il faut fournir un travail positif (c'est-à-dire dépenser de l'énergie) pour extraire une masse d'un champ gravitationnel. Ceci est une conséquence directe du fait que, dans la nature, les masses sont des quantités positives, qui s'attirent toujours. Ainsi, éloigner une masse d'une distribution arbitraire de masses nécessite de dépenser de l'énergie pour s'opposer à la force attractive entre les différentes masses. Source : Bac pro Bâtiment-métal-alu-verre-matériaux de synthèse en 2006, épreuve Mathématiques et sciences physiques. Copié d'un sujet d'examen national français, considéré dans le domaine public par la jurisprudence (Tribunal de grande instance de Paris, 9 novembre 1988, et Cour d’appel de Paris, 13 juin 1991).

Culbuto. Source : http://data.abuledu.org/URI/50c76499-culbuto

Culbuto

Culbuto vu de côté. Le point rouge et blanc représente le centre de masse de la figurine (représenté par une cible) car elle est majoritairement creuse, avec un poids à sa base. Un culbuto, rampon(n)eau ou poussa(h) est un type de jouet traditionnel pour enfants. Il s'agit d'un petit personnage dont la base arrondie est lestée de sorte que, même si le jouet est frappé ou renversé, il se redresse toujours et revient à la verticale en oscillant.

Culbuto se balance. Source : http://data.abuledu.org/URI/50c76679-culbuto-se-balance

Culbuto se balance

Lorsqu'on pousse la figurine de Culbuto (ou Ramponneau), le centre de masse devient plus haut (il passe de la ligne verte à la ligne orange), et n'est plus à la verticale du point de contact avec le sol.

Fèves de cacao dans leur cabosse. Source : http://data.abuledu.org/URI/519800d3-feves-de-cacao-dans-leur-cabosse

Fèves de cacao dans leur cabosse

Fèves de cacao dans leur cabosse. Les fèves de cacao sont les graines du cacaoyer, qui sont utilisées pour la fabrication du chocolat. Elles sont extraites des baies, que l'on ouvre à la récolte et que l'on met à sécher. La cabosse contient 16 à 60 graines1. Les fèves de cacao sont agglomérées au centre de la cabosse en une masse comportant cinq rangées correspondant aux cinq loges de l'ovule. Elles ont une forme variable, ovoïde-aplatie et mesurent environ 25 mm de long, 15 mm de large et 8 mm d'épaisseur. Fraîches, elles sont gluantes car entourées d'une pulpe blanche appelée mucilage, celui-ci est sucré, acidulé et constitué à 80 % d'eau, 15 % de glucose et 5 % de pectine.

La visée au billard. Source : http://data.abuledu.org/URI/51d94f9f-la-visee-au-billard

La visée au billard

Billard, bille de choc et bille de visée : Considérons la bille blanche comme bille de choc. Le schéma représente ce que l’on peut voir en plaçant l'œil (directeur) sur l’axe de visée, qui passe par le centre de gravité de la blanche selon un vecteur parallèle à la table. La quantité de bille exprime intrinséquement le rapport du transfert d’énergie lors du choc entre les deux billes. 1) Viser « pleine bille » revient à aligner l’axe sur les 2 centres de gravité. Le transfert de masse lors du choc est entier, la bille de visée héritant de toute la force ; 2) Viser « 3/4 de bille » revient à aligner le centre de la bille de choc avec un point situé à la moitié du rayon de la bille de visée. Elle hérite des 3/4 de la force, 1/4 restant à la blanche ; 3) Viser « 1/2 de bille » aligne l’axe de visée sur la tangente de la bille visée. Le transfert est équivalent ; Viser « 1/4 de bille » revient à aligner le centre de la bille de choc avec un point situé à l’extérieur de la bille de visée, à distance d’un demi rayon. Le rapport est cette fois 1/4 pour la visée, 3/4 pour la bille de choc ; 4) Viser « Finesse » aligne le centre de la bille de choc avec un point à l’extérieur de la bille de visée à distance d’un rayon (en pratique un peu moins afin de garantir le contact). Seule une petite quantité de force est transmise à la bille de visée. Conséquence évidente : Appliquons une force à la bille de choc, lui permettant théoriquement de parcourir un mètre. Pour autant qu'on ne mette aucun effet, en visant pleine bille, la bille de choc s’arrête, et la bille de visée parcourt un mètre. En visant demi bille, les deux billes devraient parcourir chacune 50 centimètres, etc.

Malachite du Haut-Katanga. Source : http://data.abuledu.org/URI/54861cb7-malachite-du-haut-katanga

Malachite du Haut-Katanga

Bloc de malachite au Musée royal de Centre-Afrique. La malachite est un carbonate de cuivre, produit typique d'altération superficielle des gites sulfurés de cuivre. Les gisements les plus célèbres sont au Katanga et dans l'Oural. Cette pierre ornementale a une faible dureté, qui la rend facile à travailler. Elle forme des masses mamelonnées à zonations concentriques vert foncé et vert clair mises en évidence par le polissage. La malachite est souvent utilisée pour la fabrication de bijoux et d'objets décoratifs. (don de l'Union Minière du Haut-Katanga).

Système de référence fondamental CTS. Source : http://data.abuledu.org/URI/50969ca9-systeme-de-reference-fondamental-cts

Système de référence fondamental CTS

Système de référence fondamental figé dans la Terre classique (CTS). Comme système fondamental de coordonnées terrestres on utilise désormais volontiers un système de coordonnées spatiales cartésiennes X, Y, Z dont l'origine O est au centre des masses de la Terre, et tournant avec celle-ci. L'axe OZ coïncide avec l' axe de rotation moyen de la Terre. Le plan de l'équateur moyen est perpendiculaire à cet axe OZ, et donc contenu dans le plan OXY. Historiquement, une ancienne convention fixait que le plan OXZ contenait le plan méridien moyen de Greenwich, correspondant à la longitude « moyenne » de l'Observatoire de Greenwich, dans la banlieue de Londres. Ce n'est désormais plus le cas, le méridien de référence étant calculé sous forme d'un système de référence mondial, l'"International Terrestrial Reference System". Ce calcul est mené au Laboratoire LAREG de l'IGN et celui-ci, intégrant au mieux les vitesses des plaques tectoniques, a conduit à un méridien de référence désormais significativement différent de celui de Greenwich. L'introduction de l'axe de rotation moyen s'avère nécessaire, car la rotation terrestre est variable dans le temps.