Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Carrés magiques | Jeux mathématiques | Géométrie | Calcul | Carrés | Mathématiciens | Triangles | Photographie | Multiplication (arithmétique) | Vert | Carré | Claude-Gaspard Bachet (1581-1638) | Jaune | Carrés au chocolat (cuisine) | Démonstration (logique) | Pavages (mathématiques) | Connectivités | Bleu | Bretagne (France) | ...
Connectivité du carré. Source : http://data.abuledu.org/URI/50bc1cf7-connectivite-du-carre

Connectivité du carré

Dans le cadre des pavages, la connectivité géométrique indique la relation entre un élément de pavage (une case ou tuile) et ses voisins. On parlera de 4-connectivité lorsqu'une case (ici un carré) comporte 4 voisins directs.

Connectivité du carré. Source : http://data.abuledu.org/URI/50bc1e50-connectivite-du-carre

Connectivité du carré

Dans le cadre des pavages, la connectivité géométrique indique la relation entre un élément de pavage (une case ou tuile) et ses voisins. On parlera de 8-connectivité lorsqu'une case (ici un carré) comporte 8 voisins directs.

Fabrication d'un tangram. Source : http://data.abuledu.org/URI/50bc2091-fabrication-d-un-tangram

Fabrication d'un tangram

Dessin des sept pièces de tangram dans un carré, pour fabriquer le jeu.

Patron de cube. Source : http://data.abuledu.org/URI/540324dd-patron-de-cube

Patron de cube

Patron de cube avec bandes de collage.

Pavage jaune, bleu et vert. Source : http://data.abuledu.org/URI/50bc1a63-pavage-jaune-bleu-et-vert

Pavage jaune, bleu et vert

Pavage régulier obtenu avec deux formes géométriques, un carré (jaune) et un triangle (bleu, vert).

Plateau de jeu de ludo. Source : http://data.abuledu.org/URI/53ccfe7d-plateau-de-jeu-de-ludo

Plateau de jeu de ludo

Plateau de jeu de ludo.

Plateau du jeu de Kensington. Source : http://data.abuledu.org/URI/50c4f36d-plateau-du-jeu-de-kensington

Plateau du jeu de Kensington

Kensington est un jeu de société créé par Brian Taylor et Peter Forbes en 1979 et édité par les auteurs. Pour 2 joueurs, à partir de 7 ans pour environ 20 minutes. Le nom du jeu est celui d'un quartier de Londres. Le tablier représente un réseau de triangles, carrés et hexagones ; le jeu comporte 15 pions bleus et 15 rouges. Les règles sont simples et le tablier est séduisant. Malheureusement, le jeu n'est pas très profond. Celui qui forme le premier triangle ou le premier carré est presque assuré de pouvoir disperser les pions adverses et de gagner sans difficulté. Le moyen pour gagner est donc d'être le premier à disperser les pions adverses. La pose et le déplacement des pions font penser au jeu du moulin.

Bûche de Noël, avec renne et lapin en chocolat. Source : http://data.abuledu.org/URI/530533bc-buche-de-noel-avec-renne-et-lapin-en-chocolat

Bûche de Noël, avec renne et lapin en chocolat

Bûche de Noël, avec renne et lapin en chocolat et champignons en meringue.

Carré magique. Source : http://data.abuledu.org/URI/52f56658-carre-magique

Carré magique

Carré magique normal d’ordre 3 et de constante magique 15. En mathématiques, un carré magique d’ordre n est composé de n^{2} nombres entiers, écrits sous la forme d’un tableau carré. Ces nombres sont disposés de sorte que leurs sommes sur chaque rangée, sur chaque colonne et sur chaque diagonale principale soient égales. On nomme alors constante magique (et parfois densité) la valeur de ces sommes.

Carré magique selon Moschopoulos. Source : http://data.abuledu.org/URI/52f56bce-carre-magique-selon-moschopoulos

Carré magique selon Moschopoulos

Un carré magique d'ordre 5 construit selon la méthode de Moschopoulos. La méthode de construction proposée par le Byzantin Manuel Moschopoulos, dite « parcours en cavalier d'échecs », se représente par le vecteur déplacement (1, 2) et le vecteur collision (1 + 1, 2 - 2) = (2, 0).

Carrés alimentaires de Krill. Source : http://data.abuledu.org/URI/50e465f1-carres-alimentaires-de-krill

Carrés alimentaires de Krill

Carrés de "viande" de krill dans l'antarctique. Cent mille tonnes de Krills antarctiques sont pêchées chaque année. Cette pêche s’est développée à partir des années 1970, avant de connaître un pic au tout début des années 1980, avant de ralentir légèrement. Le contenu riche en protéines et vitamines du krill, qui le rend utilisable pour l'alimentation humaine comme pour l'industrie d'aliments pour animaux, ainsi que sa grande concentration et son abondance ont tout d’abord intéressé la Russie, une des premières nations à pratiquer cette pêche. Actuellement, les principales nations pêcheuses sont la Corée du Sud, la Norvège, le Japon, la Russie, l’Ukraine et la Pologne. La biologie particulière du krill pose d'autres problèmes pour son utilisation dans l'alimentation. En effet, rapidement après sa sortie de l'eau, les enzymes puissantes contenues dans le krill commencent à dégrader ses protéines, ce qui oblige à un traitement rapide du crustacé fraîchement pêché. La transformation consiste à séparer la partie arrière de la tête et à enlever la carapace de chitine, dans l'optique de produire des produits congelés et des poudres concentrées. Avant sa commercialisation, il est nécessaire d'ôter sa carapace chitineuse riche en fluorures qui sont des composés toxiques pour l'homme. Cette opération est assez délicate à cause de la taille de l'animal et de sa fragilité. Toutes ces difficultés ont fortement augmenté le coût de la pêche du Krill antarctique, et cette activité ne s’est pas autant développée que certains le laissaient présager.

Carrés de Fibonacci en spirale. Source : http://data.abuledu.org/URI/5183e2e1-carres-de-fibonacci-en-spirale

Carrés de Fibonacci en spirale

Une spirale logarithmique peut être approchée de la manière suivante : on commence à l'origine d'un repère cartésien, on se déplace de mathcal F_1 unités vers la droite, puis de mathcal F_2 unités vers le haut, on se déplace de mathcal F_3 unités vers la gauche, ensuite de mathcal F_4 unités vers le bas, puis de mathcal F_5 unités vers la droite, etc. Cela ressemble à la construction mentionnée pour le nombre d'or.

Carrés géométriques. Source : http://data.abuledu.org/URI/52993272-carres-geometriques

Carrés géométriques

Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 : chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2×1/2 = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré.

Construction d'un carré magique - 1. Source : http://data.abuledu.org/URI/52f569ab-construction-d-un-carre-magique-1

Construction d'un carré magique - 1

Construction d'un carré magique 5x5, méthode de Méziriac : Premières étapes de construction d'un carré magique d'ordre 5. Chaque diagonale allant de gauche à droite comporte un entier unique en ordre croissant. Ensuite, le contour du carré magique final est esquissé.

Construction d'un carré magique - 2. Source : http://data.abuledu.org/URI/52f56a23-construction-d-un-carre-magique-2

Construction d'un carré magique - 2

Dernières étapes de la construction d'un carré magique 5x5 selon la méthode de Méziriac.

Construction d'un carré magique par la méthode du losange - 1. Source : http://data.abuledu.org/URI/52f56d90-construction-d-un-carre-magique-par-la-methode-du-losange-1

Construction d'un carré magique par la méthode du losange - 1

Premières étapes de la construction d'un carré magique 5x5 par la méthode du losange proposée par John Horton Conway : 1) Les nombres impairs 1, 3 et 5 sont inscrits selon une diagonale montante qui va de gauche à droite ; 2) Les nombres pairs 2 et 4 sont ensuite inscrits pour compléter la diagonale brisée ; 3) « Descendre » à la prochaine diagonale ; 4) Recommencer avec les nombres suivants.

Construction d'un carré magique par la méthode du losange - 2. Source : http://data.abuledu.org/URI/52f56e81-construction-d-un-carre-magique-par-la-methode-du-losange-2

Construction d'un carré magique par la méthode du losange - 2

Un carré magique 5x5 construit selon la méthode du losange proposée par John Horton Conway : Le résultat final est un carré magique dont la constante est 65.

Construction d'un carré magique selon la méthode siamoise. Source : http://data.abuledu.org/URI/52f56b22-construction-d-un-carre-magique-selon-la-methode-siamoise

Construction d'un carré magique selon la méthode siamoise

Un carré magique d'ordre 5 avec un carré adjacent montrant des directions : construction d'un carré magique d'ordre impair selon la méthode siamoise. Dans cet exemple, le carré est rempli selon les diagonales nord-est (NE), mais elles pourraient être parallèles à sud-est (SE), à sud-ouest (SO) ou à nord-ouest (NO). 1) Placer le 1 tel que montré. 2) Décaler d'une case vers la droite puis d'une case vers le haut pour le 2, et ainsi de suite pour le 3, puis le 4, etc. 3) Si la pointe de la flèche sort du carré, revenir de l'autre côté, comme si le carré était enroulé sur un tore. 4) Si la prochaine case est occupée, décaler d'une case vers le bas. La méthode siamoise a été introduite en France par Simon de La Loubère en 1688 alors qu'il revenait de son ambassade au Siam. Source : http://fr.wikipedia.org/wiki/Carr%C3%A9_magique_%28math%C3%A9matiques%29.

Construction de carrés magiques, nombres pairs. Source : http://data.abuledu.org/URI/52f56f2c-construction-de-carres-magiques-nombres-pairs

Construction de carrés magiques, nombres pairs

Construction d'un carré magique 8x8 selon la méthode des permutations relativement aux diagonales des sous-damiers 4x4. Dans le carré de gauche, les nombres naturels sont inscrits dans l'ordre. De plus, les diagonales principales de chaque sous-damier 4x4 sont recouvertes de lignes en pointillés. À droite, le carré final, magique, est inscrit. Chaque nombre qui n'était pas recouvert par une ligne en pointillés a été remplacé par son complément à (82 + 1) = 65.

Deux équerres dos à dos. Source : http://data.abuledu.org/URI/52acc1b3-deux-equerres-dos-a-dos

Deux équerres dos à dos

Deux équerres dos à dos, hypothénuse contre hypothénuse, formant un carré.

Mélancolie. Source : http://data.abuledu.org/URI/52f570b1-melancolie

Mélancolie

Melencolia ou La Melencolia est le nom donné à une gravure sur cuivre d'Albrecht Dürer datée de 1514. Le titre est pris de l'œuvre où il apparaît comme un élément de la composition. Melencolia I est souvent considéré comme faisant partie d'une série, Meisterstiche, comprenant également Le chevalier, la mort et le diable (1513) et Saint Jérôme dans sa cellule (1514). Cette œuvre d'une richesse symbolique exceptionnelle a été l'objet d'un nombre considérable d'études. Source : http://fr.wikipedia.org/wiki/Melencolia_I.

Multiplication de deux carrés magiques - 1. Source : http://data.abuledu.org/URI/52f5679c-multiplication-de-deux-carres-magiques-1

Multiplication de deux carrés magiques - 1

Multiplication de deux carrés magiques : Soit à effectuer le « produit » de ces deux carrés magiques, un de 3x3 et l'autre de 4x4. Le carré magique final sera de 12x12. Le « produit » de deux carrés magiques crée un carré magique d'ordre supérieur aux deux multiplicandes. Ce produit s'effectue ainsi. Soit les carrés magiques M et N : 1) Le carré final sera d'ordre MxN ; 2) Diviser le damier final en NxN sous-damiers de MxM cases ; 3) Dans le carré N, réduire de 1 la valeur de tous les nombres ; 4) Multiplier ces valeurs réduites par M × M. Les résultats sont reportés dans les cases de chaque sous-damier correspondant du carré final ; 5) Les cases du carré M sont additionnées NxN fois aux cases du damier final. Source : http://fr.wikipedia.org/wiki/Carr%C3%A9_magique_%28math%C3%A9matiques%29.

Multiplication de deux carrés magiques - 2. Source : http://data.abuledu.org/URI/52f56862-multiplication-de-deux-carres-magiques-2

Multiplication de deux carrés magiques - 2

Deuxième étape de la multiplication des deux carrés magiques (3 et 4) : Le carré magique de 3x3 est remplacé par le produit (3 × 3), alors que chaque nombre du carré 4x4 est diminué de 1. Le damier final, de taille 12x12, est divisé en 4x4 sous-damiers, chacun ayant 3x3 cases. Chacune de ses cases s'obtient en multipliant (3 × 3) par l'une des cases du carré magique 4x4 « diminué ». Par exemple, 117 est le produit de 3 × 3 × 13. Ce carré est magique, mais n'est pas normal. La prochaine étape va « corriger » cette « anomalie ».

Multiplication de deux carrés magiques - 3. Source : http://data.abuledu.org/URI/52f568e9-multiplication-de-deux-carres-magiques-3

Multiplication de deux carrés magiques - 3

Multiplication de deux carrés magiques, dernière étape : Après 4x4 additions du carré 3x3, le carré final est magique et normal.

Puzzle d'Euler. Source : http://data.abuledu.org/URI/50bc16ba-puzzle-d-euler

Puzzle d'Euler

Problème d'Euler des 36 officiers : un carré gréco-latin d’ordre 6 est impossible à résoudre. En 1782, le mathématicien suisse Leonhard Euler imagine un problème dans une grille. Certains attribuent donc la paternité du sudoku au Suisse, bien que les travaux d’Euler concernent les carrés latins et la théorie des graphes. On considère six régiments différents, chaque régiment possède six officiers de grades distincts. On se demande maintenant comment placer les 36 officiers dans une grille de 6×6, à raison d’un officier par case, de telle manière que chaque ligne et chaque colonne contienne tous les grades et tous les régiments. Il s’agit en d’autres termes d’un carré gréco-latin d’ordre 6 (la combinaison de deux carrés latins, un carré latin pour les régiments, un carré latin pour les grades), problème dont la résolution est impossible. Euler l’avait déjà pressenti à l’époque, sans toutefois donner une démonstration formelle à sa conjecture. Il dira : « Or, après toutes les peines qu’on s’est données pour résoudre ce problème, on a été obligé de reconnaître qu’un tel arrangement est absolument impossible, quoiqu’on ne puisse pas en donner de démonstration rigoureuse. » En 1901, le Français Gaston Tarry démontre l’impossibilité du résultat grâce à une recherche exhaustive des cas et par croisement des résultats. Le lien entre le sudoku et le problème des 36 officiers est la contrainte qui empêche la répétition du même élément dans la grille, tout en arrivant au final à un jeu qui emploie le principe du carré latin (combinaison de deux carrés latins dans le cas du carré gréco-latin, carré latin subdivisé en plusieurs régions dans le cas du sudoku).

Somme des carrés. Source : http://data.abuledu.org/URI/529c3f36-somme-des-carres

Somme des carrés

Un exemple de preuve sans mots à propos de la somme des premiers carrés : chacune des trois pyramides a pour volume la somme des carrés de 1 à n (n=4 dans cette illustration) ; le parallélépipède final est de côtés n, n+1 et n+1/2. Ce résultat se généralise pour la somme des n premières puissances strictement positives. Cette somme porte le nom de formule de Faulhaber. Johann Faulhaber (1580-1635) est un mathématicien allemand qui collabora avec Kepler.

Statue en chocolat d'Amieux Frères. Source : http://data.abuledu.org/URI/5380d180-statue-en-chocolat-d-amieux-freres

Statue en chocolat d'Amieux Frères

Statue vantant "Amieux Frères", photo prise au Musée du château des ducs de Bretagne de Nantes. Ce sont les fils de Jean-Maurice Amieux, Louis (1867-1936) et Maurice (1871-1944), qui lancent la marque "Amieux Frères". En 1900, la société possède onze usines en Bretagne et en Vendée et emploie 4000 ouvriers. À cette époque, Amieux Frères commence la diversification de ses activités (confitures et chocolats Amieux et St Clair, moutardes, saumures, charcuterie, foie gras). En 1923, ils rachètent l'usine Colin, ancien grenier à sel, et y fondent un musée technique et rétrospectif de la conserve devenu Musée des Salorges, détruit en 1943 et installé ensuite dans le château des ducs de Bretagne. Source : http://fr.wikipedia.org/wiki/Maurice-%C3%89tienne_Amieux