Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.
Cumulonimbus associé à un orage supercellulaire, en fin d'après-midi le 3 Avril 2004. L’orage supercellulaire est un type particulier d'orage qui est associé avec des phénomènes violents comme les tornades et la grosse grêle. Il se caractérise par une énergie potentielle de convection disponible élevée (plus de 1 500 J/kg), par un courant ascendant permettant une très large extension verticale (jusqu'à plus de 15 km) et par un changement des vents avec l'altitude dont la direction tourne. Le tout amène un renforcement du mouvement vertical sous le courant ascendant et l'effet de la synchronisation entre le front de rafales descendantes et le courant ascendant est perceptible. Plus l'énergie potentielle de convection disponible sera importante, plus le sommet du nuage d'orage sera élevé et plus intenses seront les phénomènes. Des valeurs extrêmes d'énergie potentielle de convection disponible de 6 000 J/kg ont été mesurées lors des tornades de l'Oklahoma du 3 mai 1999 qui ravagèrent la banlieue sud d'Oklahoma City. En règle générale, les orages supercellulaires se trouvent dans le secteur chaud d'un système dépressionnaire et se déplacent généralement en direction du nord-est, avec le front froid associé à la perturbation.
Vue conceptuelle d'un cumulonimbus supercellulaire légendée en français : 1) Une enclume à la tropopause — laquelle est une barrière au développement vertical du nuage. Elle s'étend loin de la cellule originale poussée par des vents horizontaux très forts. 2) Un sommet en dôme stratosphérique, dit sommet protubérant, qui dépasse l'enclume là où le courant ascendant se trouve et indique qu'il est assez fort pour vaincre l'inversion de température à la tropopause. 3) Des mammatus sous l'enclume, des protubérances nuageuses formées par l'air froid d'altitude descendant par poussée négative d'Archimède dans le nuage. Ils sont signe d'instabilité. 4) Dans le flanc arrière droit, derrière les précipitations, une tornade sous le nuage-mur (Wall-cloud). 5) Une ligne de flanc formée de petits cumulonimbus ou cumulus congestus engendrés par l'ascension de l'air chaud aspiré par l'ascendance principale. Des trombes terrestres le long du front de rafales peuvent se former. Elles sont dues à un phénomène de convergence.
Deux éclairs zébrant le ciel à Schaffhouse, en Suisse. Photo prise depuis Dörflingen. Un oiseau est aussi visible dans l'image. Quatre images de l'oiseau en vol sont visibles suite à l'effet stroboscopique dû aux éclairs.
Photographie, Cumulonimbus, Météorologie, Foudre, Orages, Marchés, Marchés de plein air, Éclairs, Marrakech (Maroc), Marrakech (Maroc) -- Place Jema al-Fna
Éclair inter-nuageux au Maroc sur la Place Jemaa el Fna, à Marrakech. La disposition des charges électriques dans l'orage crée des différences de potentiel entre le sommet, le centre et la base de l'orage. Lorsque le potentiel est suffisamment grand, l'air entre ces différents niveaux n'est plus assez isolant et un claquage se produit. La foudre alors générée peut se produire entre les différentes parties du nuage ou entre des nuages voisins. Comme ces couches sont plus près en général les unes des autres qu'elles ne le sont du sol, ce genre d'éclairs sera le premier à se produire. À mesure que l'orage prend de l'extension verticale et que le potentiel augmente, la foudre nuage-sol prendra le dessus sans jamais être la seule. Le changement de proportion entre le type inter/intra-nuageux et nuage-sol est donc une indication du stade de développement du cumulonimbus.
Coup de foudre (éclair nuage-sol), juillet 2006 près d'Issoudun dans l'Indre (36). Il existe deux types de foudre nuage-sol : soit descendant (sommet du nuage vers le sol) ou soit ascendant (sol vers base du nuage). Le type descendant est le plus fréquent. Source : http://fr.wikipedia.org/wiki/Foudre
Image d'un front d'orages en réflectivité (en dBZ), vu sur PPI, (plan position indicator). Comme les données sondées par le radar se font à un angle d'élévation à la fois, les premières images ont été celles d'un affichage panoramique des données de chaque angle individuellement (PPI). Ce type de données doit être interprété en se rappelant que le faisceau radar s'élève au-dessus du sol à mesure qu'on s'éloigne du radar. Donc ce qu'on voit près du radar est à beaucoup plus bas niveau que ce que l'on voit à 200 km. Il en résulte qu'un nuage avec des taux de pluie élevé à 30 km du radar peut sembler diminuer ou augmenter d'intensité à mesure qu'il s'éloigne du radar. En fait, comme notre faisceau est plus haut dans le nuage au second temps, il regarde une autre section de ce dernier. Un PPI est également affligé de retours venant du sol près du radar car une partie de l'énergie émise se retrouve dans les lobes secondaires hors de l'axe du faisceau principal. Ceci donne de très forts retours qui peuvent être mal interprétés comme étant des précipitations fortes. USAGE : Tous les types de données: réflectivité, vitesse radiale et les différents champs de polarimétrie.
Évolution typique d'un grain en arc vu au radar : (a) Supercellule, (b) Ligne de grains, (c) Grain en arc, (d) Rotation engendrée dans les bouts. Les lignes tiretées indiquent l'axe des rafales maximales et les flèches la direction des vents par rapport à la ligne d'orages. Un grain en arc résulte de l'étalement d'une goutte froide qui se forme à l'avant d'un orage ou d'une ligne d'orages quand l'air des niveaux moyens et la précipitation en descendent. Lorsque le cisaillement des vents est de modéré à fort dans les bas niveaux de l'atmosphère et que la direction de ce changement est linéaire, la goutte s'étale en arc. Le soulèvement sur le devant de la goutte cause la reformation d'orages qui s'aligneront en arc. Le grain orageux ainsi généré aura quelques kilomètres d'épaisseur et de 20 à 200 km de long, en général moins long qu'une ligne de grains rectiligne. Sa durée de vie sera de 3 à 6 heures et en général causera des dégâts importants sur son trajet, car le courant-jet des niveaux moyens qui descend le long du front de rafales se trouve concentré. Un grain en arc peut se transformer en Derecho si les conditions sont favorables.
Grêlon : La grêle est un type de précipitation qui se forme dans des cumulonimbus particulièrement forts lorsque l'air est très humide et que les courants ascendants sont puissants. Elle prend la forme de billes de glace, les grêlons, dont le diamètre peut varier de quelques millimètres à plusieurs dizaines de centimètres mais dont le diamètre habituel est entre 5 et 50 millimètres. Les averses de grêle durent peu de temps et ne touchent que la superficie limitée traversée par l'orage. Cependant, si les nuages convectifs sont nombreux, une succession de trajectoire de grêle peut affecter une région et laisser plusieurs dizaines de tonnes de glace au sol.
Gros grêlon formé de la fusion de plusieurs plus petits : le grêlon se meut verticalement à une vitesse variable qui dépend de sa position dans le courant ascendant ainsi que de son poids. C'est ce qui va faire varier l'épaisseur des couches car le taux de capture des gouttelettes surfondues (accrétion) dépend des vitesses relatives entre celles-ci et le grêlon, certaines vitesses d'ascension la favorisant. La croissance des grêlons amène le relâchement de chaleur latente, ce qui peut garder l'extérieur du grêlon liquide, le rendant plus "collant". Les grêlons peuvent alors s'agglomérer à deux ou plusieurs, selon les collisions, pour en former de plus gros, aux formes irrégulières.
Diagramme qui montre des coupes verticales et horizontales à travers une ligne de grain (orages). On y voit la circulation de l'air et les zones de précipitations.
Coupe verticale d'un orage de grêle avec l'air entrant soulevé en altitude et formant les grêlons. Dès qu'une goutte gèle dans les niveaux supérieurs de la troposphère (couche inférieure de l'atmosphère terrestre) où la température est inférieure à -10 °C, elle devient un tel noyau de congélation qui peut commencer le grêlon. L'embryon se retrouve alors entouré de vapeur d'eau et de gouttes restées liquides, la surfusion pouvant exister jusqu'à une température de -39 °C. Comme la pression de vapeur de saturation de la glace est moindre que celle de l'eau à ces températures, la vapeur d'eau contenue dans l'air en ascension rapide va se condenser en priorité sur les noyaux de glace. Les grêlons croîtront donc plus rapidement que les gouttes de pluie dans une atmosphère humide comme celle de l'orage. De plus, les embryons de grêle cannibalisent la vapeur d'eau des gouttes surfondues dans leur entourage. En effet, à la surface des gouttes il y a toujours un échange de vapeur d'eau avec l'air environnant et le grêlon semble attirer les molécules d'eau vers lui parce qu'il leur est plus facile de s'y condenser que sur la goutte (Effet Bergeron). Finalement, les gouttes de pluie qui entrent en contact avec les grêlons, gèlent instantanément sur sa surface.
Photographie, Météorologie, Phénomènes naturels, Foudre, Orages, Sydney (Australie), Éclairs, Phénomènes atmosphériques
Orage exceptionnel à Sydney en 1991, depuis Potts Point, Sydney, Australie : un éclair toutes les 30 secondes pendant deux heures.
Textes, Orages, Pinocchio, Dix-neuvième siècle, Nuit, Peur chez l'enfant, Faim physiologique, Littérature de jeunesse, Carlo Collodi (1826-1890)
Carlo Collodi (1826-1890), Pinocchio chapitre 6. Traduction (als33, mai 2013) de la version anglaise de M-A. Murray, 1892. Source : en.wikisource, "The Story of a Puppet".
Photographie, Foudre, Orages, École Utagawa, Contes japonais, Estampe en couleurs -- Japon, Japonais (langue), Sauvetage, Utagawa Kuniyoshi (1797–1861), Bébés animaux
Fusehime sauvant le bébé Inue Shimbyoe Masahi de l'orage, par Utagawa Kuniyoshi (1797–1861). Histoire de Satomi et des clans Anzai.
La structure en couche de ces grêlons est visible : Une coupe transversale des gros grêlons montre qu'ils ont une structure en pelure d'oignon, c'est-à-dire formée de couches de croissance épaisses et translucides alternant avec des couches minces, blanches et opaques. La théorie voulait antérieurement que les grêlons fussent sujets à plusieurs allers-retours, retombant dans la zone humide puis regelant dans une nouvelle phase ascendante, ce qui aurait généré les couches successives. Cependant, les recherches théoriques et sur le terrain ont démontré que ce n'était pas le cas.