Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.
Dessins et plans, Cube, Mécanique, Efforts (mécanique), Contraintes (mécanique), Milieux continus, Mécanique des, Tenseurs, Calcul des
Désignation des faces d'un cube utilisée notamment en mécanique des milieux continus. Le tenseur des contraintes est une représentation utilisée en mécanique des milieux continus pour caractériser l'état de contrainte, c'est-à-dire les efforts intérieurs mis en jeu entre les portions déformées du milieu. Le terme a été introduit par Cauchy vers 1822. Comme les efforts intérieurs sont définis pour chaque surface coupant le milieu (on parle d'ailleurs également d'efforts surfaciques), le tenseur est défini localement, en chaque point du solide. L'état de contrainte du solide est donc représenté par un champ tensoriel. On parle aussi de ce fait de champ de contrainte.
Dessins et plans, Efforts (mécanique), Contraintes (mécanique), Milieux continus, Mécanique des, Tenseurs, Calcul des, Tétraèdres
Tétraèdre permettant de calculer le vecteur-contrainte normal à une face quelconque avec un vecteur n, fonction des composants du tenseur des contraintes. Considérons le petit élément de volume d au délimité par le tétraèdre de sommets M, (dx1,0,0),(0,dx2,0), (0,0,dx3). Les vecteurs normaux aux faces sont donc vec e_1,vec e_2,vec e_3 et le vecteur de composantes (1/mathrm{d}x_1, 1/mathrm{d}x_2, 1/mathrm{d}x_3). La force vec{mathrm{F}} s'exerçant sur une face vérifie vec mathrm{F} = mathrm{T} cdot vec n où vec n le vecteur caractéristique de la face, c'est-à-dire le vecteur normal ayant pour norme l'aire de la face. On a par exemple sur la face [M, (dx1,0,0),(0,dx2,0)], la relation vec mathrm{F} = egin{pmatrix} mathrm{F}_1 \ mathrm{F}_2 \ mathrm{F}_3 end{pmatrix} = egin{pmatrix} sigma_{11} & sigma_{12} & sigma_{13}\ sigma_{12} & sigma_{22} & sigma_{23}\ sigma_{13} & sigma_{23} & sigma_{33}\ end{pmatrix} cdot egin{pmatrix} 0\ 0\ (mathrm{d}x_1 cdot mathrm{d}x_2)/2\end{pmatrix}.