Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Biochimie | Eau de mer | Eau de mer -- Analyse | Chlorophylle | Biochimie marine | Botanique | Océans | Spectroscopie | Père Secchi (1818-1878) | Chimie | Sel | Eaux salées | Eau de mer -- Microbiologie | Eau de mer -- Composition | Eau de mer -- Biochimie | Antoine de Saporta (1855-1914) | Textes | ADN | Biologie moléculaire | ...
Cycle de l'azote dans le sol. Source : http://data.abuledu.org/URI/5148a2e0-cycle-de-l-azote-dans-le-sol

Cycle de l'azote dans le sol

Le cycle de l'azote est un cycle biogéochimique qui décrit la succession des modifications subies par les différentes formes de l'azote (diazote, nitrate, nitrite, ammoniaque, azote organique). L'atmosphère est la principale source d'azote, sous forme de diazote, puisqu'elle en contient 79 % en volume. L'azote, composé essentiel à de nombreux processus biologiques, se retrouve entre autres dans les acides aminés constituant les protéines, et dans les bases azotées présentes dans l'ADN. Des processus sont nécessaires pour transformer l'azote atmosphérique en une forme assimilable par les organismes. L'azote atmosphérique est fixé par des bactéries présentes dans le sol, telles que Azotobacter vinelandii, grâce à une enzyme, la nitrogénase. Celles-ci produisent de l'ammoniaque (NH4OH) à partir de l'azote atmosphérique et de l'hydrogène de l'eau (l'ammoniaque est le nom de la forme soluble dans l'eau du gaz ammoniac). Certaines de ces bactéries, comme Rhizobium, vivent en symbiose avec des plantes, produisant de l'ammoniaque nécessaire aux plantes, en contrepartie des glucides de la plante dans la rhizosphère. L'ammoniaque peut aussi provenir de la décomposition d'organismes morts par des bactéries saprophytes sous forme d'ions ammonium (NH4+). Dans les sols bien oxygénés, mais aussi en milieu aquatique oxygéné, des bactéries transforment l'ammoniac (NH3) en nitrite (NO2-), puis en nitrates (NO3-), au cours du processus de nitrification. On peut décomposer cette transformation en nitritation et nitratation. Les végétaux absorbent grâce à leurs racines les ions nitrate (NO3-) et, dans une moindre mesure, l'ammonium présent dans le sol, et les incorporent dans les acides aminés et les protéines. Les végétaux constituent ainsi la source primaire d'azote assimilable par les animaux. En milieu anoxique (sol ou milieu aquatique non oxygéné), des bactéries dites dénitrifiantes transforment les nitrates en gaz diazote, c'est la dénitrification.

Molécule de Chlorophylle a. Source : http://data.abuledu.org/URI/50e41950-molecule-de-chlorophylle-a

Molécule de Chlorophylle a

Molécule de chlorophylle a. En vert : magnésium ; en bleu : azote ; en noir : carbone ; en blanc : hydrogène ; en rouge : oxygène.

Propriétés des acides aminés. Source : http://data.abuledu.org/URI/50ce35ed-proprietes-des-acides-amines

Propriétés des acides aminés

Diagramme de Venn des propriétés des acides aminés, John Venn (1834-1923) opéra plusieurs modifications importantes dans la représentation eulérienne des attributs : 1) remplacement des cercles par des courbes fermées simples (sans points doubles ; par exemple des ellipses), 2) utilisation dans tous les cas d'une unique représentation pour chaque ensemble de n attributs, dans laquelle toutes les conjonctions possibles p à p des attributs existent, 3) coloration (grisé ou hachures) des régions connues comme « vides » (conjonctions qu'on sait impossibles), 4) indication par un signe graphique des régions connues comme « non vides » (conjonctions qu'on sait possibles).

Structure d'un brin d'ADN. Source : http://data.abuledu.org/URI/50ce3408-structure-d-un-brin-d-adn

Structure d'un brin d'ADN

Structure d'un brin d'ADN. Les quatre bases nucléiques C, G, A et T sont liées à une chaîne poly (2-désoxy-D-ribose-5-phosphate). La séquence des acides aminés dans les protéines est codée par les gènes constitués de l'ADN présent dans les chromosomes des cellules eucaryotes ou dispersé dans le cytosol des procaryotes — certains virus ont un génome constitué d'ARN. ADN et ARN sont des biomolécules de très grande taille formées par l'enchaînement linéaire de centaines de milliers de nucléotides de quatre types différents : l'ADN est un polymère de dAMP, TMP, dGMP et dCMP, symbolisées par les lettres A, T, G et C ;La séquence des acides aminés dans les protéines est codée par les gènes constitués de l'ADN présent dans les chromosomes des cellules eucaryotes ou dispersé dans le cytosol des procaryotes — certains virus ont un génome constitué d'ARN. ADN et ARN sont des biomolécules de très grande taille formées par l'enchaînement linéaire de centaines de milliers de nucléotides de quatre types différents : l'ADN est un polymère de dAMP, TMP, dGMP et dCMP, symbolisées par les lettres A, T, G et C. Ces nucléotides sont eux-mêmes formés respectivement d'une unité 2-désoxy-D-ribose-5-phosphate pour l'ADN.

Structure de la chlorophylle a, b et d. Source : http://data.abuledu.org/URI/50e41886-structure-de-la-chlorophylle-a-b-et-d

Structure de la chlorophylle a, b et d

Il existe plusieurs formes de chlorophylle différentiables selon leur structure chimique : 1) La chlorophylle a (symbole : « chla » ) est le pigment photosynthétique le plus commun du règne végétal. La mesure de sa concentration dans l'eau est utilisée comme indicateur de la quantité de plancton végétal (phytoplancton, base principale du réseau trophique aquatique). Les taux de l'eau en chlorophylle sont donnés en µg chla/L. 2) La chlorophylle b se trouve chez les cormophytes (végétaux supérieurs) et les chlorophycées (algues vertes). 3) La chlorophylle d, identifiée en 1943 et retrouvée chez certaines cyanobactéries (parfois dites algues bleues).

Composition de l'eau de mer. Source : http://data.abuledu.org/URI/55472a68-composition-de-l-eau-de-mer

Composition de l'eau de mer

Proportions des "sels" dans l'eau de mer, et composition du sel.

Eau de mer - expérience du Père Secchi. Source : http://data.abuledu.org/URI/55b24434-eau-de-mer-experience-du-pere-secchi

Eau de mer - expérience du Père Secchi

Antoine de Saporta, L’eau de mer, ses propriétés physiques et chimiques, in Revue des Deux Mondes tome 66, 1884 : expérience du Père Secchi (1818-1878), à quelle profondeur les objets disparaissent-ils à la vue de l'homme ? (588 mots)

Sels de mer. Source : http://data.abuledu.org/URI/50e7704e-sels-de-mer

Sels de mer

Proportions des "sels" dans l'eau de mer, et composition chimique du sel. Source : Hannes Grobe, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Allemagne ; SVG version par Stefan Majewsky ; traduction par Korrigan.

Structure générale des acides aminés. Source : http://data.abuledu.org/URI/50ce32ab-structure-genetique-des-acides-amines

Structure générale des acides aminés

Structure générale d'un acide α-aminé. Les acides aminés (ou aminoacides) sont une classe de composés chimiques possédant deux groupes fonctionnels : à la fois un groupe carboxyle –COOH et un groupe amine –NH2. Parmi ceux-ci, les acides α-aminés se définissent par le fait que leur groupe amine est lié à l'atome de carbone adjacent au groupe acide carboxylique (le carbone α), ce qui leur confère la structure générique H2N–CHR–COOH, où R représente la chaîne latérale, qui identifie l'acide α-aminé. Les acides α-aminés jouent un rôle fondamental en biochimie comme constituants élémentaires des protéines : ils polymérisent en formant des liaisons peptidiques qui aboutissent à de longues chaînes macromoléculaires appelées peptides.