Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Molécules | Photographie | Chimie | Ionisation | Spectromètres | Structure moléculaire | Physique | Origami | Produits de bricolage | Liquides | Pliages en papier | Atomes | Eau | Botanique | Solides | Biologie | Mitochondries | Molécules -- Modèles | Lumière | ...
Ménisque de l'eau. Source : http://data.abuledu.org/URI/5287aee9-menisque-de-l-eau

Ménisque de l'eau

Schéma du ménisque de l'eau au niveau moléculaire. Le ménisque est la surface courbe d'un liquide ; il apparaît en réponse à la surface du contenant ou d'un autre objet. La mesure précise d'un volume de solution aqueuse à l'aide d'une burette utilise la méthode du ménisque concave.

Molécule d'eau en 3D. Source : http://data.abuledu.org/URI/52756797-molecule-d-eau-en-3d

Molécule d'eau en 3D

Molécule d'eau en 3D : Représentation schématique d'une molécule d'eau avec en rouge l'atome d'oxygène et en blanc les deux atomes d'hydrogène.

Molécule de Chlorophylle a. Source : http://data.abuledu.org/URI/50e41950-molecule-de-chlorophylle-a

Molécule de Chlorophylle a

Molécule de chlorophylle a. En vert : magnésium ; en bleu : azote ; en noir : carbone ; en blanc : hydrogène ; en rouge : oxygène.

Molécule de l'ammoniac en origami. Source : http://data.abuledu.org/URI/52f25fca-molecule-de-l-ammoniac-en-origami

Molécule de l'ammoniac en origami

Molécule de l'ammoniac en origami, créée par Belén Garrido, pliage d'Archivaldo.

Molécule de l'eau en origami. Source : http://data.abuledu.org/URI/52f25e52-molecule-de-l-eau-en-origami

Molécule de l'eau en origami

Molécule de l'eau en origami, créée par Belén Garrid : un atome d'oxygène et deux atomes d'hydrogène.

Molécule du méthane en origami. Source : http://data.abuledu.org/URI/52f25f3a-molecule-du-methane-en-origami

Molécule du méthane en origami

Molécule du méthane créée par Belén Garrido, origami d'Archivaldo.

Niveau d'Organisation et d'Intégration du Vivant. Source : http://data.abuledu.org/URI/50b7f09c-niveau-d-organisation-et-d-integration-du-vivant

Niveau d'Organisation et d'Intégration du Vivant

Graphique représentant les différents niveaux d'organisation ou d'intégration du vivant. Il ne s'agit pas d'une hiérarchie, mais d'une présentation simplifiée, des niveaux étudiés par les biologistes et écologues : biosphère, biomes, paysages, écosystèmes, biocénoses, communautés, populations, individus, organes, cellules, molécules/ADN.

Atténuation. Source : http://data.abuledu.org/URI/5232e82d-attenuation

Atténuation

Forte atténuation du signal lors du passage d'une ligne de forts orages au-dessus du radôme. Source : Environnement Canada. Toute onde électromagnétique peut être absorbée en passant dans un milieu quelconque car elle excite les molécules qui le composent. Cela peut donc enlever une partie des photons pour faire changer le niveau énergétique du milieu. L'air est très peu absorbant mais la molécule d'eau l'est. Plus la longueur d'onde porteuse du faisceau radar se rapproche de celle des gouttes d'eau (0,1 à 7 millimètres), plus le dipôle de ces molécules sera excité et plus l'onde sera atténuée par la précipitation rencontrée. En conséquence, les radars météorologiques utilisent généralement une longueur d'onde de 5 cm ou plus. À 5 centimètres, lors de pluies intenses, on note une perte de signal en aval de celles-ci sur l'image radar. L'atténuation est cependant de nulle à acceptable dans des précipitations faibles à modérées et dans la neige. C'est pourquoi la plupart des pays des régions tempérées (Canada et une bonne partie de l'Europe) utilisent cette longueur d'onde. Elle nécessite une technologie moins coûteuse (magnétron et de plus petite antenne). Les nations ayant une prédominance d'orages violents utilisent une longueur d'onde de 10 centimètres qui est atténuée de façon négligeable dans toutes les conditions mais est plus coûteuse (klystron). C'est le cas des États-Unis, de Taïwan et d'autres. Les longueurs d'onde de moins de 5 cm sont fortement atténuées, même par pluie modérée, mais peuvent avoir une certaine utilité à courte portée, là où la résolution est plus fine. Certaines stations de télévision américaines utilisent des radars de 3 centimètres pour couvrir leur auditoire en plus du NEXRAD local.

Bouillon de volaille. Source : http://data.abuledu.org/URI/5218a839-bouillon-de-volaille

Bouillon de volaille

Bouillon de volaille. Un bouillon, en cuisine, est une préparation culinaire liquide (généralement de l'eau) dans lequel on cuit un ou plusieurs aliments, tels que viande, poisson, ou légume. Lors de cette opération, saveurs, couleurs et nutriments sont transférés à la phase aqueuse par osmose ; de nouvelles molécules aromatiques sont également créées par le processus de cuisson. Le bouillon formant la partie liquide du pot-au-feu est également nommé « consommé blanc ». La réduction d'un bouillon obtenu avec une base animale (viande ou poisson) permet d'obtenir un fond, plus concentré en arômes et saveurs. On parle des yeux du bouillon pour désigner les bulles de graisse qui nagent à sa surface.

Couverture de HYDRODYNAMICA en 1738. Source : http://data.abuledu.org/URI/52c40898-couverture-de-hydrodynamica-en-1738

Couverture de HYDRODYNAMICA en 1738

Page de couverture du traité d'Hydrodynamique de Daniel Bernoulli publié en 1738 : "Hydrodynamica, sive de Viribus et Motibus Fluidorum commentarii. Opus Academicum". Strasbourg Dulsecker, 1738. Dans son Hydrodynamique, il montre l'importance du principe de la conservation de l'énergie, et expose les premiers éléments de la théorie cinétique des gaz. Les molécules gazeuses, en état d'agitation d'autant plus vive que la pression est plus élevée, heurtent les parois du récipient qui les contient ; la pression est le résultat de cette multitude de chocs (in Daumas, Histoire de la Science, p. 903). On y trouve aussi un traité sur les marées et un travail sur les cordes vibrantes.

Diffusion de Raleigh et de Mie. Source : http://data.abuledu.org/URI/50dd7afc-diffusion-de-raleigh-et-de-mie

Diffusion de Raleigh et de Mie

Illustration de la diffusion de Raleigh et de Mie sur une particule sphérique. De gauche à droite : intensité de la diffusion Rayleigh, de la diffusion Mie pour de petites particules et de la diffusion Mie pour de grosses particules, en fonction de la direction. L'onde incidente arrive par la gauche. La diffusion par des très petites particules, telles que des molécules, de dimensions inférieures au dixième de la longueur d'onde considérée, est un cas limite appelé diffusion Rayleigh. Pour les particules plus grosses que cette longueur d'onde, on doit prendre en compte la diffusion de Mie dans son intégralité : elle explique dans quelles directions la diffusion est la plus intense, on obtient ainsi un « patron de réémission » qui ressemble à celui des lobes d'émission d'une antenne, avec, dans le cas de grosses particules, un lobe plus intense dans la direction opposée à celle d'où provient l'onde incidente. La diffusion de Mie n'est pas fortement dépendante de la longueur d'onde utilisée comme c'est le cas dans celle de Rayleigh. Elle produit donc une lumière presque blanche lorsque le Soleil illumine de grosses particules dans l'air : c'est cette dispersion qui donne la couleur blanc laiteux à la brume et au brouillard. La couleur du ciel, pendant toute la durée du jour, est provoquée par diffusions Rayleigh et Mie de la lumière solaire dans l'atmosphère. La diffusion Rayleigh provoque les teintes bleues, violettes et vertes du ciel. Les couleurs caractéristiques du lever de soleil sont causées par diffusion de Mie de sa lumière par les particules de poussière, suie, fumée et cendre en suspension dans l'atmosphère : lorsque le Soleil est près de l'horizon, sa lumière traverse une plus grande épaisseur d'atmosphère, elle est donc plus susceptible d'être diffusée.

Immunoglobuline. Source : http://data.abuledu.org/URI/50cf7013-immunoglobuline

Immunoglobuline

Un anticorps possède quatre domaines variables situés aux extrémités des deux « bras ». L'association entre un domaine variable porté par une chaîne lourde (VH) et le domaine variable adjacent porté par une chaîne légère (VL) constitue le site de reconnaissance (ou paratope) de l'antigène. Ainsi, une molécule d'immunoglobuline possède deux sites de liaison à l'antigène, un au bout de chaque bras. Ces deux sites sont identiques (mais destinés à différents épitopes), d'où la possibilité de lier deux molécules d'antigène par anticorps. Immunoglobuline : 1. Fragment Fab ( Il a la même affinité pour l'antigène que l'anticorps complet, il est formé de la chaîne légère en entier (VL+CL) et d'une partie de la chaîne lourde (VH+CH1). Il est monovalent), 2. Fragment Fc (cristallisable) : il est le support des propriétés biologiques de l'immunoglobuline, en particulier sa capacité à être reconnue par des effecteurs de l'immunité ou à activer le complément. Il est constitué des fragments constants des chaînes lourdes (CH2) au-delà de la région charnière (hinge). Il ne reconnaît pas l'antigène, 3. Chaîne lourde (en bleu) avec une région variable (VH) suivie d'une région constante (CH1), une région charnière, et deux autres régions constantes (CH2 and CH3), 4. Chaîne légère (en vert) avec une région variable (VL) et une constante (CL), 5. Paratope, 6. Régions charnières.

Ionisation chimique. Source : http://data.abuledu.org/URI/50ac0de8-ionisation-chimique

Ionisation chimique

Spectromètre de masse à ionisation chimique. En plus du dispositif Ionisation Électronique, un gaz réactif est introduit dans la source et ionisé par impact électronique. S'ensuit une série de réactions qui donne naissance à des ions pouvant réagir avec les molécules d'analyte arrivant dans la source. Ce type de réactions ions-molécules produit principalement (en mode positif) des ions [MH]+, et [M+adduit+H]+, permettant ainsi d'accéder à la masse moléculaire de l'analyte. Le méthane, l'isobutane et l'ammoniac sont parmi les gaz d'ionisation chimique les plus utilisés.

Ionisation électronique. Source : http://data.abuledu.org/URI/50ac0d37-ionisation-electronique

Ionisation électronique

Spectromètrie de masse à source d'ionisation électronique, légendé en français : La spectrométrie de masse est une technique physique d'analyse permettant de détecter et d'identifier des molécules d’intérêt par mesure de leur masse, et de caractériser leur structure chimique. Son principe réside dans la séparation en phase gazeuse de molécules chargées (ions) en fonction de leur rapport masse/charge (m/z). Le spectromètre de masse, initialement conçu par le Britannique Joseph John Thomson, comporte une source d'ionisation suivie d'un ou plusieurs analyseurs qui séparent les ions produits selon leur rapport m/z, d'un détecteur qui compte les ions et amplifie le signal, et enfin d'un système informatique pour traiter le signal.

Ionisation par électrospray. Source : http://data.abuledu.org/URI/50ac0ea6-ionisation-par-electrospray

Ionisation par électrospray

Spectrométrie de masse avec inoisation par électrospray. Son principe est le suivant : à pression atmosphérique, les gouttelettes de solutés sont formées à l'extrémité d'un fin capillaire porté à un potentiel élevé. Le champ électrique intense leur confère une densité de charge importante. Sous l'effet de ce champ et grâce à l'assistance éventuelle d'un courant d'air co-axial, l'effluent liquide est transformé en nuage de fines gouttelettes (spray) chargées suivant le mode d'ionisation. Sous l'effet d'un second courant d'air chauffé, les gouttelettes s'évaporent progressivement. Leur densité de charge devenant trop importante, les gouttelettes explosent en libérant des microgouttelettes constituées de molécules protonées ou déprotonées de l'analyte, porteuses d'un nombre de charges variable. Les ions ainsi formés sont ensuite guidés à l'aide de potentiels électriques appliqués sur deux cônes d'échantillonnage successifs faisant office de barrières avec les parties en aval maintenues sous un vide poussé (<10-5 Torr). Durant ce parcours à pression élevée, les ions subissent de multiples collisions avec les molécules de gaz et de solvant, ce qui complète leur désolvatation. En faisant varier les potentiels électriques appliqués dans la source il est possible de provoquer des fragmentations plus ou moins importantes.

La désorption-ionisation laser assistée par matrice (MALDI). Source : http://data.abuledu.org/URI/50ac0fbf-la-desorption-ionisation-laser-assistee-par-matrice-maldi-

La désorption-ionisation laser assistée par matrice (MALDI)

Spectrométrie de masse avec désorption-ionisation laser assistée par matrice (MALDI) : Un faisceau laser pulsé est utilisé, généralement dans le domaine des ultraviolets, pour désorber et ioniser un mélange matrice/échantillon cocristallisé sur une surface métallique, la cible. Les molécules de matrice absorbent l'énergie transmise par le laser sous forme de photons UV, s'excitent et s'ionisent. L'énergie absorbée par la matrice provoque sa dissociation et son passage en phase gazeuse. Les molécules de matrice ionisées transfèrent leur charge à l'échantillon. L'expansion de la matrice entraîne l'échantillon au sein de la phase gazeuse dense où il va finir de s'ioniser. L'ionisation de l'échantillon a donc lieu soit dans la phase solide avant la désorption, soit par transfert de charge lors de collisions avec la matrice excitée après désorption. Elle conduit à la formation d'ions monochargés et multichargés de type [M+nH]n+, avec une nette prépondérance pour les monochargés.

Le spectre électromagnétique. Source : http://data.abuledu.org/URI/50a81854-le-spectre-electromagnetique

Le spectre électromagnétique

Proposition d'illustration du spectre électromagnétique, le spectre visible correspond aux couleurs en bas du schéma. La lumière visible, appelée aussi spectre visible ou spectre optique est la partie du spectre électromagnétique qui est visible pour l'œil humain. Il n'y a aucune limite exacte au spectre visible : l'œil adapté à la lumière possède généralement une sensibilité maximale à la lumière de longueur d'onde d'environ 550 nm, ce qui correspond à une couleur jaune-verte. Généralement, on considère que la réponse de l'œil couvre les longueurs d'ondes de 380 nm à 780 nm bien qu'une gamme de 400 nm à 700 nm soit plus commune. Les fréquences correspondantes vont de 350 à 750 THz (10¹² Hz). Cette gamme de longueur d'onde est importante pour le monde vivant car des longueurs d'ondes plus courtes que 380 nm endommageraient la structure des molécules organiques tandis que celles plus longues que 720 nm seraient absorbées par l'eau, constituant abondant du vivant. Ces extrêmes correspondent respectivement aux couleurs violet et rouge. Cependant, l'œil peut avoir une certaine réponse visuelle dans des gammes de longueurs d'onde encore plus larges. Les longueurs d'onde dans la gamme visible pour l'œil occupent la majeure partie de la fenêtre optique, une gamme des longueurs d'onde qui sont facilement transmises par l'atmosphère de la Terre.

Mitochondrie. Source : http://data.abuledu.org/URI/5215004f-mitochondrie

Mitochondrie

Schéma légendé d'une mitochondrie : Une mitochondrie (du grec mitos, fil et chondros, grain) est un organite à l'intérieur d'une cellule eucaryote, dont la taille est de l'ordre du micromètre. Son rôle physiologique est primordial, puisque c'est dans les mitochondries que l'énergie fournie par les molécules organiques est récupérée sous forme d'ATP (énergie contenue dans la liaison phosphoanhydride), la source principale d'énergie pour la cellule eucaryote, par le processus d'oxydation phosphorylante. L'ensemble des mitochondries d'une cellule constitue ce que l'on appelle son chondriome.

Molécules d'un solide, d'un liquide et d'un gas. Source : http://data.abuledu.org/URI/50cd9db0-molecules-d-un-solide-d-un-liquide-et-d-un-gas

Molécules d'un solide, d'un liquide et d'un gas

Molécules à l'état solide, liquide et gazeux. Diagramme montrant comment sont configurés les molécules et les atomes pour les différents états de la matière.

Opacité électromagnétique de l'atmosphère. Source : http://data.abuledu.org/URI/50be41a2-opacite-electromagnetique-de-l-atmosphere

Opacité électromagnétique de l'atmosphère

Opacité électromagnétique (ou transmittance) de l'atmosphère en fonction de la longueur d'onde (jusqu'à 1km). L’absorption optique est une autre propriété importante de l'atmosphère. Différentes molécules absorbent différentes longueurs d'onde de radiations. Par exemple, l'O2 et l'O3 absorbent presque toutes les longueurs d'onde inférieures à 300 nanomètres. L'eau (H2O) absorbe la plupart des longueurs d'onde au-dessus de 700 nm, mais cela dépend de la quantité de vapeur d'eau dans l'atmosphère. Quand une molécule absorbe un photon, cela accroît son énergie. Quand les spectres d'absorption des gaz de l'atmosphère sont combinés, il reste des « fenêtres » de faible opacité, autorisant le passage de certaines bandes lumineuses. La fenêtre optique va d'environ 300 nm (ultraviolet-C) jusqu'aux longueurs d'onde que les humains peuvent voir, la lumière visible (communément appelé lumière), à environ 400–700 nm et continue jusqu'aux infrarouges vers environ 1100 nm. Il y a aussi des fenêtres atmosphériques et radios qui transmettent certaines ondes infrarouges et radio sur des longueurs d'onde plus importantes. Par exemple, la fenêtre radio s'étend sur des longueurs d'onde allant de un centimètre à environ onze mètres. Le graphe ci-dessus représente 1-T (exprimé en %) (T:transmittance)

Orage de grêle. Source : http://data.abuledu.org/URI/52349bd5-orage-de-grele

Orage de grêle

Coupe verticale d'un orage de grêle avec l'air entrant soulevé en altitude et formant les grêlons. Dès qu'une goutte gèle dans les niveaux supérieurs de la troposphère (couche inférieure de l'atmosphère terrestre) où la température est inférieure à -10 °C, elle devient un tel noyau de congélation qui peut commencer le grêlon. L'embryon se retrouve alors entouré de vapeur d'eau et de gouttes restées liquides, la surfusion pouvant exister jusqu'à une température de -39 °C. Comme la pression de vapeur de saturation de la glace est moindre que celle de l'eau à ces températures, la vapeur d'eau contenue dans l'air en ascension rapide va se condenser en priorité sur les noyaux de glace. Les grêlons croîtront donc plus rapidement que les gouttes de pluie dans une atmosphère humide comme celle de l'orage. De plus, les embryons de grêle cannibalisent la vapeur d'eau des gouttes surfondues dans leur entourage. En effet, à la surface des gouttes il y a toujours un échange de vapeur d'eau avec l'air environnant et le grêlon semble attirer les molécules d'eau vers lui parce qu'il leur est plus facile de s'y condenser que sur la goutte (Effet Bergeron). Finalement, les gouttes de pluie qui entrent en contact avec les grêlons, gèlent instantanément sur sa surface.

Organisation des molécules des trois états de la matière. Source : http://data.abuledu.org/URI/50a2a076-organisation-des-molecules-des-trois-etats-de-la-matiere

Organisation des molécules des trois états de la matière

Molécules à l'état solide, liquide et gazeux : la phase liquide est un état de la matière. Sous cette forme, la matière est facilement déformable mais difficilement compressible. Le liquide est une forme de fluide : les molécules sont faiblement liées, ce qui rend les liquides parfaitement déformables. Mais, à l'inverse du gaz, elles sont tout de même liées : une molécule ne peut s'éloigner beaucoup d'une autre, ce qui fait que la matière liquide a une cohésion que ne possède pas le gaz et, comme dans les solides, les molécules sont très proches les unes des autres, ce qui rend doncles liquides difficilement compressibles.

Plant de violettes. Source : http://data.abuledu.org/URI/514cd2ec-plant-de-violettes

Plant de violettes

Plant de violettes. La Violette odorante (Viola odorata) est une petite plante vivace de la famille des Violaceae formant des colonies plus ou moins étendues, aux tiges formant des stolons, aux feuilles ovales, en cœur à la base, munies d'un long pétiole et aux fleurs odorantes, au bout d'une mince tige, fleurissant de février à mai, formées de cinq pétales violet dont l'inférieur est muni d'un éperon qui sont stériles (alors que de petites fleurs verdâtres et tardives forment des graines). Elle colonise les prés, les bois et les haies. La violette odorante est utilisée en parfumerie. On ne distille toutefois pas les fleurs mais les feuilles. Le produit obtenu possède une note verte, poudrée, légèrement cireuse. La note 'fleur de violette', typique et plus douce est obtenue grâce à des molécules de synthèse.

Schéma d'un Chloroplaste. Source : http://data.abuledu.org/URI/5214c92a-schema-d-un-chloroplaste

Schéma d'un Chloroplaste

Schème de chloroplaste d'une plante supérieure. Les chloroplastes sont des organites présents dans le cytoplasme des cellules eucaryotes photosynthètique (plantes, algues). Ils sont sensibles aux expositions des différentes ondes du spectre lumineux. Ils jouent un rôle essentiel dans le fonctionnement d'une cellule végétale car ils permettent de capter la lumière à l'origine de la photosynthèse. Par l'intermédiaire de la chlorophylle qu'ils possèdent et de leurs ultrastructures, ces organites sont capables de transférer l'énergie véhiculée par les photons à des molécules chimiques (eau). Les chloroplastes jouent un rôle important dans le cycle du carbone, par la transformation du carbone atmosphérique en carbone organique. Les chloroplastes appartiennent à une famille d'organites appelés les plastes ; ceux-ci sont le fruit de l'endosymbiose d'une cyanobactérie, il y a environ 1,5 milliard d'années.

Schéma de la pile Volta. Source : http://data.abuledu.org/URI/50c26934-schema-de-la-pile-volta

Schéma de la pile Volta

Schéma résumant le principe de fonctionnement de la pile Volta : disque de cuivre, disque de zinc, solution aqueuse. Oxydation du zinc : libération de deux électrons. Réduction de deux molécules d'eau, dégagement gazeux d'hydrogène. Il se produit au niveau de chaque couche, qu'on appellera désormais une superposition d'un disque de cuivre et d'un disque de zinc, séparés par un tissu retenant la solution, une réaction d'oxydo-réduction. Il ne se passe rien au niveau du disque de cuivre. Les éléments participant à l'oxydation et à la réduction sont les éléments zinc et eau. Au niveau atomique, l'oxydation d'un atome de zinc, selon la réaction Zn → Zn2+ + 2 e- produit deux électrons qui vont transiter dans le circuit électrique, pour atteindre le disque de cuivre. Les électrons vont alors rencontrer deux molécules d'eau, et une autre réaction de réduction va se produire, selon la réaction 2 H2O + 2 e- → 2 OH- + H2. On constate ainsi que le disque de zinc est petit à petit consommé et qu'il y a production de dihydrogène.

Schéma de micelle. Source : http://data.abuledu.org/URI/50a202f5-schema-de-micelle-

Schéma de micelle

Schéma d'une micelle formée par des phospholipides en milieu aqueux. Une micelle (nom féminin dérivé du nom latin mica, signifiant « parcelle ») est un agrégat sphéroïdal de molécules possédant une tête polaire hydrophile dirigée vers le solvant et une chaîne hydrophobe dirigée vers l'intérieur. Une micelle mesure de 0,001 à 0,300 micron. L'hydrophobie des chaînes entraîne le regroupement des molécules et la mise en place de structures sphériques ou cylindriques visant à éliminer le solvant. Elles sont faiblement liées, maintenues dans le solvant grâce à des agents qui les stabilisent, tels les détergents ou les macromolécules. Les solutions colloïdales — dont l'aspect évoque une colle (par exemple, un gel) — sont riches en micelles. On parle de micelles directes dans un solvant polaire, tel l'eau.

Schéma de mitochondrie animale. Source : http://data.abuledu.org/URI/50709cff-schema-de-mitochondrie-animale

Schéma de mitochondrie animale

Vue détaillée d'une mitochondrie animale, légende en français de Ethan Gray : Une mitochondrie (du grec mitos, fil et chondros, grain) est un organite à l'intérieur d'une cellule eucaryote, dont la taille est de l'ordre du micromètre. Son rôle physiologique est primordial, puisque c'est dans les mitochondries que l'énergie fournie par les molécules organiques est récupérée sous forme d'ATP (énergie contenue dans la liaison phosphate-phosphate), la source principale d'énergie pour la cellule eucaryote, par le processus d'oxydation phosphorylante. L'ensemble des mitochondries d'une cellule constitue ce que l'on appelle son chondriome.

Structure moléculaire d'un liquide. Source : http://data.abuledu.org/URI/50cd9d1e-structure-moleculaire-d-un-liquide

Structure moléculaire d'un liquide

Structure moléculaire d'un liquide : La phase liquide est un état de la matière. Sous cette forme, la matière est facilement déformable mais difficilement compressible. Le liquide est une forme de fluide : les molécules sont faiblement liées, ce qui rend les liquides parfaitement déformables. Mais, à l'inverse du gaz, elles sont tout de même liées : une molécule ne peut s'éloigner beaucoup d'une autre, ce qui fait que la matière liquide a une cohésion que ne possède pas le gaz (et comme dans les solides, les molécules sont très proches les unes des autres, ce qui rend les liquides difficilement compressibles). Chaque atome est en contact avec de nombreux voisins mais aucun ordre n'apparait.