Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Triangles (géométrie) | Géométrie | Dessins et plans | Constructions géométriques | Théorème de Pythagore | Photographie | Vitraux | Métaphore | Art contemporain | Carlo Roccella (né en 1956) | Art abstrait | Issy-les-Moulineaux (Hauts-de-Seine) | Cercles | Cercles du triangle | Polygones | Parallèles (géométrie) | Thalès, Théorème de | Hauteurs (géométrie) | Médianes (géométrie) | Dix-huitième siècle | ...
Cercles circonscrits à un triangle. Source : http://data.abuledu.org/URI/518573ae-cercles-circonscrits-a-un-triangle

Cercles circonscrits à un triangle

Trois cercles circonscrits à des triangles.

Découpage d'un polygone en triangles. Source : http://data.abuledu.org/URI/52ac8124-decoupage-d-un-polygone-en-triangles

Découpage d'un polygone en triangles

Les triangles ont une importance capitale : en effet, tout polygone — surface délimitée par une ligne brisée fermée — peut se découper en triangles (maillage). Par ailleurs, tout triangle peut se découper en deux triangles rectangles. Ainsi, si l'on sait travailler sur un triangle rectangle, on sait travailler sur tout polygone. Par ailleurs, les triangles rectangles ont des propriétés particulières qui permettent des calculs faciles.

Réciproque du théorème de Thalès. Source : http://data.abuledu.org/URI/50c50076-reciproque-du-theoreme-de-thales

Réciproque du théorème de Thalès

Le théorème des milieux est un cas particulier de la réciproque du théorème de Thalès. Si un segment a pour extrémités les milieux de deux côtés d’un triangle, alors il est parallèle au troisième côté, et sa longueur est égale à la moitié de celle de ce troisième côté. Soient I et J les milieux respectifs des segments [AB] et [AC], alors (IJ) // (BC) et IJ = BC ÷ 2.

Théorème de la médiane. Source : http://data.abuledu.org/URI/50c501b4-theoreme-de-la-mediane

Théorème de la médiane

Médiane et hauteur d'un triangle. Le théorème de la médiane, ou théorème d'Apollonius, est une relation entre la longueur d'une médiane d'un triangle et la longueur de ses côtés. Soit ABC un triangle quelconque, et AI la médiane issue de A. On a alors la relation suivante : AB^2 + AC^2 = 2BI^2 + 2AI^2, Ou encore : AB^2 + AC^2 = {1 over 2} BC^2 + 2AI^2.

Théorème de Stewart. Source : http://data.abuledu.org/URI/50c504eb-theoreme-de-stewart

Théorème de Stewart

En géométrie euclidienne, le théorème de Stewart est une généralisation du théorème de la médiane, due au mathématicien Matthew Stewart dans les années 1746 : Théorème — Soit p une cévienne d'un triangle ABC divisant en X le côté a en deux parties x et y. On a alors la relation suivante : acdot (xy+p^{2}) = xcdot b^{2}+ycdot c^{2}. Matthew Stewart est un mathématicien écossais (1717-1785) reconnu comme un mathématicien important après la publication de son "General Theorems", en 1746.

Trace d'une perpendiculaire avec la méthode du 3 4 5. Source : http://data.abuledu.org/URI/52ac8562-trace-d-une-perpendiculaire-avec-la-methode-du-3-4-5

Trace d'une perpendiculaire avec la méthode du 3 4 5

Tracé d'une perpendiculaire en maçonnerie, méthode du 3-4-5 : le triangle est rectangle (théorème de Pythagore).

Triangle rectangle. Source : http://data.abuledu.org/URI/51857259-triangle-rectangle

Triangle rectangle

Triangle rectangle. Traduction en français Christophe Catarina.

Triangle rectangle. Source : http://data.abuledu.org/URI/5185731f-triangle-rectangle

Triangle rectangle

Triangle rectangle : Dans un triangle rectangle, l'hypoténuse (AB) est le côté non adjacent à l'angle droit, ou le côté opposé à l'angle droit (en C).

Triangle rectangle. Source : http://data.abuledu.org/URI/52ac82eb-triangle-rectangle

Triangle rectangle

Triangle ABC rectangle en C. Le côté le plus long d'un triangle rectangle est appelé "hypoténuse" (côté AB dans cette image), les deux autres sont les "côtés de l'angle droit". Le théorème de Pythagore énonce, avec les notation du dessin ci-contre, que AB2 = AC2 + BC2.

Triangle rectangle. Source : http://data.abuledu.org/URI/52ac8627-triangle-rectangle

Triangle rectangle

Triangle rectangle en C dont les côtés sont légendés en français : AB = Hypothénuse ; AC = Côté adjacent à l'angle A ; BC = Côté opposé à l'angle A.

Vitrail moderne à Issy-les-Moulineaux. Source : http://data.abuledu.org/URI/52da6624-vitrail-moderne-a-issy-les-moulineaux

Vitrail moderne à Issy-les-Moulineaux

Vitrail de la Trinité à Issy les Moulineaux, le fils, par Carlo Roccella (né en 1956). Source : http://fr.wikipedia.org/wiki/Carlo_Roccella

Vitrail moderne à Issy-les-Moulineaux. Source : http://data.abuledu.org/URI/52da678a-vitrail-moderne-a-issy-les-moulineaux

Vitrail moderne à Issy-les-Moulineaux

Vitrail de la Trinité, le père, à Issy les Moulineaux par Carlo Roccella (né en 1956). Source : http://fr.wikipedia.org/wiki/Trinit%C3%A9_chr%C3%A9tienne.