Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Vecteurs | Vitesse angulaire | Rotation | Physique | Euler, Cercle d' | Anneaux |
Anneaux d'Euler. Source : http://data.abuledu.org/URI/50ccd774-anneaux-d-euler

Anneaux d'Euler

Construction schématique de l'addition de vecteurs vitesse angulaire pour des repères tournants. Dans le cas de repères tournants, la composition des mouvements est plus simple que dans le cas général, car la matrice finale est toujours un produit de matrices de rotation. Comme dans le cas général, l'addition est commutative vec{omega}_1 + vec{omega}_2 = vec{omega}_2 + vec{omega}_1. Les composantes du pseudovecteur vitesse angulaire ont été calculés pour la première fois par Leonhard Euler en utilisant ses angles d'Euler.

Repère d'Euler. Source : http://data.abuledu.org/URI/50ccd859-repere-d-euler

Repère d'Euler

Repère d'Euler (en vert). Les composantes du pseudovecteur vitesse angulaire ont été calculé pour la première fois par Leonhard Euler en utilisant ses angles d'Euler et un repère intermédiaire construit à partir des repères intermédiaires de la construction : 1-Un axe du repère de référence (l'axe de précession), 2-La ligne des nœuds du repère tournant par rapport au repère de référence (axe de nutation), 3-Un axe du repère tournant (l'axe de rotation intrinsèque). Euler prouva que les projections du pseudovecteur vitesse angulaire sur ces trois axes sont les dérivées des angles associés (ce qui est équivalent à décomposer la rotation instantanée en trois rotations de Euler instantanées). Ainsi : omega = dotalpha old u_1 +doteta old u_2 +dotgamma old u_3.

Vecteur vitesse angulaire. Source : http://data.abuledu.org/URI/50ccd5fe-vecteur-vitesse-angulaire

Vecteur vitesse angulaire

Le vecteur vitesse angulaire décrit la vitesse de rotation et l'axe de rotation instantanée. La direction du vecteur vitesse angulaire est celle de l'axe de rotation; dans ce cas (sens anti-horaire) le vecteur point vers le haut. En trois dimensions, la vitesse angulaire est en général considérée comme un vecteur, ou plus précisément, un pseudovecteur. On parle du vecteur (ou pseudovecteur) vitesse angulaire. Il a non seulement une magnitude, mais aussi une direction et un sens. La magnitude est la vitesse angulaire scalaire et la direction indique l'axe de rotation. Le sens du vecteur précise le sens de rotation, via la règle de la main droite.