Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Navigation aérienne | Aéronautique | Gyroscopes optiques | Gyrolasers | Navigation (aéronautique) | Spectrométrie de masse avec ionisation électrospray | Chambres d'ionisation | Spectromètres | Ionisation | Optique | Gouttes -- Dimensions | Veines pulmonaires | Capillaires -- Perméabilité | Capillaires | Alvéoles pulmonaires | Liquides | Physique | Capillarité | Solides | ...
Anatomie pulmonaire. Source : http://data.abuledu.org/URI/50c851d6-anatomie-pulmonaire

Anatomie pulmonaire

Anatomie pulmonaire : détail des alvéoles et de la circulation pulmonaires. Un alvéole est un mince sac creux (qui prolonge les voies respiratoires) où se déroulent les échanges gazeux avec le sang. Les alvéoles sont petits avec des parois très minces. Ils ont un rayon de 0,1 mm et une épaisseur de paroi d'environ 0,3µm. Les poumons contiennent environ 300 millions d'alvéoles, chacun enveloppé dans une fine maille de capillaires.

Formes d'une goutte. Source : http://data.abuledu.org/URI/50cda85c-formes-d-une-goutte

Formes d'une goutte

Illustration de la longueur capillaire d'une goutte posée sur un liquide, sphérique ou aplatie selon sa taille, comparée à sa longueur capillaire. Il existe une très grande diversité de forme de goutte (sphérique, en larme, etc.). Ce sont les forces en présence (poids, tension de surface, inertie pour une goutte en mouvement) qui en déterminent la forme. Une goutte statique sur un solide peut être décrite de la même manière qu’une goutte dans l’air. Ainsi, si elle est suffisamment petite, la seule force qui détermine sa forme est la tension de surface. Par contre, l’angle de contact avec lequel la goutte repose sur le solide dépend des conditions de mouillage. Cet angle de contact et les conditions de mouillage sont décrits thermodynamiquement par le modèle de Young qui met en relation les tensions de surface et l'angle de contact à l’équilibre ( heta_mathrm{C}) du système goutte-substrat. L’angle de contact à l'équilibre en soi est physiquement difficile à mesurer. Une façon d'acquérir l'angle de contact à l'équilibre, est à travers sa relation (son lien) avec les angles de contact avançant ( heta_mathrm{A}) et reculant ( heta_mathrm{R}) qui quant à eux peuvent être mesurés facilement. Au final, la goutte aura donc une forme de calotte sphérique.

Gyrolaser. Source : http://data.abuledu.org/URI/518fa987-gyrolaser

Gyrolaser

Schéma d'un gyrolaser : L’appareil comporte une partie optique et une partie électronique. Il est de forme triangulaire ou carrée. La partie optique comporte des miroirs et un tube capillaire remplit d’un mélange gazeux qui constitue le milieu amplificateur du laser. Le premier miroir est concave pour améliorer la focalisation, le deuxième est fixé sur un moteur piézoélectrique ce qui va permettre de moduler la puissance du laser et le troisième est semi-réfléchissant, ce qui permet de récupérer une partie du faisceau. Un gyromètre laser ou gyrolaser est un capteur de vitesse angulaire (gyromètre) basé sur l'effet Sagnac et mettant en œuvre un rayon laser. Celui-ci parcourt un circuit optique dans les deux sens, l’interférence des deux rayons va dépendre de la vitesse de rotation de l’ensemble.

Ionisation par électrospray. Source : http://data.abuledu.org/URI/50ac0ea6-ionisation-par-electrospray

Ionisation par électrospray

Spectrométrie de masse avec inoisation par électrospray. Son principe est le suivant : à pression atmosphérique, les gouttelettes de solutés sont formées à l'extrémité d'un fin capillaire porté à un potentiel élevé. Le champ électrique intense leur confère une densité de charge importante. Sous l'effet de ce champ et grâce à l'assistance éventuelle d'un courant d'air co-axial, l'effluent liquide est transformé en nuage de fines gouttelettes (spray) chargées suivant le mode d'ionisation. Sous l'effet d'un second courant d'air chauffé, les gouttelettes s'évaporent progressivement. Leur densité de charge devenant trop importante, les gouttelettes explosent en libérant des microgouttelettes constituées de molécules protonées ou déprotonées de l'analyte, porteuses d'un nombre de charges variable. Les ions ainsi formés sont ensuite guidés à l'aide de potentiels électriques appliqués sur deux cônes d'échantillonnage successifs faisant office de barrières avec les parties en aval maintenues sous un vide poussé (<10-5 Torr). Durant ce parcours à pression élevée, les ions subissent de multiples collisions avec les molécules de gaz et de solvant, ce qui complète leur désolvatation. En faisant varier les potentiels électriques appliqués dans la source il est possible de provoquer des fragmentations plus ou moins importantes.