Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.
Construction schématique de l'addition de vecteurs vitesse angulaire pour des repères tournants. Dans le cas de repères tournants, la composition des mouvements est plus simple que dans le cas général, car la matrice finale est toujours un produit de matrices de rotation. Comme dans le cas général, l'addition est commutative vec{omega}_1 + vec{omega}_2 = vec{omega}_2 + vec{omega}_1. Les composantes du pseudovecteur vitesse angulaire ont été calculés pour la première fois par Leonhard Euler en utilisant ses angles d'Euler.
Repère d'Euler (en vert). Les composantes du pseudovecteur vitesse angulaire ont été calculé pour la première fois par Leonhard Euler en utilisant ses angles d'Euler et un repère intermédiaire construit à partir des repères intermédiaires de la construction : 1-Un axe du repère de référence (l'axe de précession), 2-La ligne des nœuds du repère tournant par rapport au repère de référence (axe de nutation), 3-Un axe du repère tournant (l'axe de rotation intrinsèque). Euler prouva que les projections du pseudovecteur vitesse angulaire sur ces trois axes sont les dérivées des angles associés (ce qui est équivalent à décomposer la rotation instantanée en trois rotations de Euler instantanées). Ainsi : omega = dotalpha old u_1 +doteta old u_2 +dotgamma old u_3.
Le vecteur vitesse angulaire d'une particule au point P par rapport à l'origine O est déterminé par la composante orthogonale du vecteur vitesse v. La vitesse angulaire d'une particule est mesurée par rapport ou relativement à un point, appelé origine. Comme indiqué sur la figure (avec les angles phi et heta en radians, si l'on trace une droite depuis l'origine (O) jusqu'à la particule (P), alors le vecteur vitesse (v) de la particule a une composante le long de la droite (composante radiale, v∥) et une composante orthogonale (v_perp). Si la composante radiale est nulle, la particule se déplace sur un cercle, alors que si la composante orthogonale est nulle, la particule se déplace sur une ligne droite passant par l'origine. Un mouvement radial n'induit aucun changement dans la direction de la particule par rapport à l'origine, c'est pourquoi, lorsque l'on s'intéresse à la vitesse angulaire, la composante radiale peut être ignorée. Ainsi, la rotation est entièrement produite par le mouvement orthogonal relativement à l'origine, et la vitesse angulaire est entièrement déterminée par cette composante.
Le vecteur vitesse angulaire décrit la vitesse de rotation et l'axe de rotation instantanée. La direction du vecteur vitesse angulaire est celle de l'axe de rotation; dans ce cas (sens anti-horaire) le vecteur point vers le haut. En trois dimensions, la vitesse angulaire est en général considérée comme un vecteur, ou plus précisément, un pseudovecteur. On parle du vecteur (ou pseudovecteur) vitesse angulaire. Il a non seulement une magnitude, mais aussi une direction et un sens. La magnitude est la vitesse angulaire scalaire et la direction indique l'axe de rotation. Le sens du vecteur précise le sens de rotation, via la règle de la main droite.