Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Photographie | Effet photovoltaïque | Émission photoélectrique | Loisirs | Photoémission | Instrument à vent, Musique d' | Musique | Instruments à vent | Orgue | Métronomes | Pulsations | Savants allemands | Temps, Mesure du | Microscopes électroniques | Piles électriques | Ping-pong | Informatique | Jeux vidéo | Physiciens américains | ...
Caméscope. Source : http://data.abuledu.org/URI/532950ec-camescope

Caméscope

Caméscope Canon VIXIA HF10 : On nomme caméscope un appareil électronique portatif permettant d'enregistrer des images et du son sur un même support. Il combine donc les fonctions d'une caméra vidéo avec celles d'un magnétoscope, d'où son nom, mot-valise de ces deux termes et qui aurait été inventé Par René Bouillot1, à l'époque où il était ingénieur chez Thomson. Il s'agit d'une évolution technologique par rapport à la génération précédente qui faisait appel à deux appareils distincts. Source : http://fr.wikipedia.org/wiki/Cam%C3%A9scope.

Composantes d'un radar monostatique. Source : http://data.abuledu.org/URI/5232f5e3-composantes-d-un-radar-monostatique

Composantes d'un radar monostatique

Composantes d'un radar monostatique : 1) L'émetteur qui produit l'onde radio. 2) Un guide d'onde qui amène l'onde vers l'antenne sur les radars à hyperfréquences (fréquences supérieures au gigahertz). 3) Le duplexeur, un commutateur électronique, dirige l'onde vers l'antenne lors de l'émission puis le signal de retour depuis l'antenne vers le récepteur lors de la réception quand on utilise un radar monostatique. Il permet donc d'utiliser la même antenne pour les deux fonctions. Il est primordial qu'il soit bien synchronisé, puisque la puissance du signal émis est de l'ordre du mega-watt ce qui est trop important pour le récepteur qui, lui, traite des signaux d'une puissance de l'ordre de quelques nano-watts. Au cas où l'impulsion émise serait dirigée vers le récepteur, celui-ci serait instantanément détruit.

Corrosion galvanique. Source : http://data.abuledu.org/URI/50c2652c-corrosion-galvanique

Corrosion galvanique

Corrosion galvanique, exemple d'un assemblage par rivet entre une tôle d'aluminium et de cuivre sans isolation. Une pile électrochimique est créée lorsque deux métaux de natures différentes sont mis en contact. Un des métaux s'oxyde et se dissout (anode), tandis que sur l'autre métal a lieu une réduction (cathode), et éventuellement formation d'une couche de produits de réaction (des espèces chimiques de la solution se réduisent et se déposent, notamment dépôt calco-magnésien). On parle de corrosion galvanique. Ce phénomène explique : le principe de la « protection cathodique par anode sacrificielle » : on crée une pile électrochimique qui impose un sens de parcours aux électrons pour empêcher la réaction de corrosion ; l'anode se dissout (elle est sacrifiée) et la cathode reste stable, elle est de plus parfois protégée par une couche de produits de réaction ; le principe de la « protection cathodique par courant imposé » : à la place de l'anode sacrificielle, on peut imposer le sens de parcours des électrons en établissant une différence de potentiel entre la pièce et le milieu avec un générateur de tension, par exemple alimenté par des panneaux solaires ; ce phénomène explique aussi pourquoi lorsque l'on met deux métaux différents en contact, l'un se corrode très rapidement. C'est exactement le même type de réactions chimiques qui ont lieu dans une pile d'alimentation électrique, une batterie ou un accumulateur.

Faisceau d'un radar. Source : http://data.abuledu.org/URI/5232d720-faisceau-d-un-radar

Faisceau d'un radar

Diagramme légendé en français du parcours d'un faisceau radar pulsé et le volume sondé. Une impulsion électromagnétique est produite par un oscillateur (magnétron, klystron ou autre) électronique. Elle est envoyée à travers un guide d’ondes à une antenne directive. La largeur du faisceau qui définit la résolution en azimut et en élévation dépend des caractéristiques de l'antenne, et la durée d’impulsion sinusoïdale simple (de l’ordre de la microseconde), définit la résolution radiale. Il est possible d'utiliser des impulsions compressées qui obtenir une meilleure résolution radiale. Ainsi, une impulsion sonde un volume de l'atmosphère qui augmente avec la distance au radar. On voit sur l'image le volume qu'occupent deux impulsions parties à des temps différents d'un radar. Avec les dimensions typiques d'un faisceau radar, le volume sondé varie donc de 0,001 km³ près du radar, jusqu'à 1 km³ à 200 km de celui-ci. Il s'agit du «volume radar».

Gyrolaser. Source : http://data.abuledu.org/URI/518fa987-gyrolaser

Gyrolaser

Schéma d'un gyrolaser : L’appareil comporte une partie optique et une partie électronique. Il est de forme triangulaire ou carrée. La partie optique comporte des miroirs et un tube capillaire remplit d’un mélange gazeux qui constitue le milieu amplificateur du laser. Le premier miroir est concave pour améliorer la focalisation, le deuxième est fixé sur un moteur piézoélectrique ce qui va permettre de moduler la puissance du laser et le troisième est semi-réfléchissant, ce qui permet de récupérer une partie du faisceau. Un gyromètre laser ou gyrolaser est un capteur de vitesse angulaire (gyromètre) basé sur l'effet Sagnac et mettant en œuvre un rayon laser. Celui-ci parcourt un circuit optique dans les deux sens, l’interférence des deux rayons va dépendre de la vitesse de rotation de l’ensemble.

L'effet photoélectrique. Source : http://data.abuledu.org/URI/50b24689-l-effet-photoelectrique

L'effet photoélectrique

L'effet photoélectrique : schéma montrant l'émission d'électrons depuis une plaque métallique. L'émission de chaque électron (ligne bleue) requiert une quantité minimale d'énergie, laquelle est apportée par un photon (ligne rouge). En physique, l'effet photoélectrique (EPE) désigne en premier lieu l'émission d'électrons par un matériau soumis à l'action de la lumière. Par extension, il regroupe parfois l'ensemble des phénomènes électriques d'un matériau provoqués par l'action de la lumière. On distinguera alors deux effets : des électrons sont éjectés du matériau (émission photoélectrique) et une modification de la conductivité du matériau (photoconductivité, effet photovoltaïque lorsqu'il est en œuvre au sein d'une cellule photovoltaïque, effet photoélectrochimique, effet photorésistif).

L'effet photoélectrique. Source : http://data.abuledu.org/URI/50b2468a-l-effet-photoelectrique

L'effet photoélectrique

L'effet photoélectrique : schéma montrant l'émission d'électrons depuis une plaque métallique. L'émission de chaque électron (ligne bleue) requiert une quantité minimale d'énergie, laquelle est apportée par un photon (ligne rouge). En physique, l'effet photoélectrique (EPE) désigne en premier lieu l'émission d'électrons par un matériau soumis à l'action de la lumière. Par extension, il regroupe parfois l'ensemble des phénomènes électriques d'un matériau provoqués par l'action de la lumière. On distinguera alors deux effets : des électrons sont éjectés du matériau (émission photoélectrique) et une modification de la conductivité du matériau (photoconductivité, effet photovoltaïque lorsqu'il est en œuvre au sein d'une cellule photovoltaïque, effet photoélectrochimique, effet photorésistif).

Lampe fluorescente compacte. Source : http://data.abuledu.org/URI/50cb83ca-lampe-fluorescente-compacte

Lampe fluorescente compacte

Lampe fluorescente compacte (LFC) - fluocompacte : adaptation du tube industriel à un usage domestique. C'est un tube fluorescent émettant de la lumière, dont le tube est miniaturisé, plié en deux, trois ou quatre, ou encore enroulé, doté d'un culot contenant un ballast électronique. Elles ont les mêmes avantages que les tubes fluorescents linéaires, à la différence près que le tube n'est souvent pas interchangeable.

Masque de Bahtinov. Source : http://data.abuledu.org/URI/550d9e0d-masque-de-bahtinov

Masque de Bahtinov

Le masque de Bahtinov est un dispositif permettant de faciliter la mise au point des instruments astronomiques. Il a été nommé d'après son inventeur Pavel Bahtinov. Le masque est constitué de trois grilles distinctes, orientées selon trois angles différents, de façon à produire une légère diffraction pour chaque grille, à la focale de l'instrument lorsque celui-ci pointe une étoile suffisamment brillante. Lorsque la mise au point est modifiée, les éléments de diffraction forment des petits "traits" en forme de "X" qui partent de l'étoile, et le trait central semble se déplacer de haut en bas. La mise au point est optimale lorsque le trait central est centré sur l'étoile et positionné symétriquement par rapport aux deux autres traits. De ce fait, les mises au point approximatives sont rapidement décelées. Source : https://fr.wikipedia.org/wiki/Masque_de_Bahtinov

Métronomes. Source : http://data.abuledu.org/URI/50b00587-metronomes

Métronomes

Métronome électronique simple à gauche et métronome mécanique à ressort à droite : Inventé à Amsterdam en 1812 par l'horloger hollandais Dietrich Nikolaus Winkel (vers 1780-1826), le métronome traditionnel à pulsation audible fut breveté en 1816 par l'Allemand Johann Nepomuk Maelzel. Il est constitué d'un mouvement d'horlogerie à échappement muni d'un balancier gradué dont les battements (c'est-à-dire les pulsations) déterminent des durées égales (c'est-à-dire les temps), un contrepoids mobile coulissant sur le balancier permettant de modifier la vitesse (c'est-à-dire le tempo). Chaque graduation indique une subdivision de la minute. Par exemple, 60 signifie soixante pulsations par minute, soit une oscillation par seconde; 120 = cent-vingt pulsations par minute, soit deux oscillations par seconde, etc. Les instrumentistes et chefs d'orchestre lui préfèrent au XXIe siècle les métronomes électroniques apparus au cours de la deuxième moitié du XXe siècle et dont il existe un grand nombre de modèles plus ou moins perfectionnés, moins encombrants, plus précis et surtout plus fiables.

Microscope électronique de Ruska. Source : http://data.abuledu.org/URI/50b35363-microscope-electronique-de-ruska

Microscope électronique de Ruska

Microscope électronique construit par Ernst Ruska en 1933. Suite aux élaborations théoriques de Louis de Broglie en 1924, on a pu prouver en 1926 que des champs magnétiques ou électrostatiques pouvaient être utilisés comme lentilles pour les faisceaux d'électrons. Le premier prototype de microscope électronique a été construit en 1931 par les ingénieurs allemands Ernst Ruska et Max Knoll. Ce premier instrument grossissait au mieux les objets de quatre cent fois. Deux ans plus tard, Ruska construisit un microscope électronique qui dépassait la résolution possible d'un microscope optique. Reinhold Rudenberg, le directeur scientifique de Siemens, a breveté le microscope électronique en 1931, stimulé par une maladie dans la famille, pour rendre visible le virus de la poliomyélite.

Orgue. Source : http://data.abuledu.org/URI/50eea70c-orgue

Orgue

L'orgue est un instrument à vent multiforme dont les caractéristiques communes sont de produire les sons à l’aide d’ensembles de tuyaux sonores alimentés par une soufflerie, et accordés suivant une gamme définie. L'orgue est joué le plus souvent à l’aide d’au moins un clavier et le plus souvent d’un pédalier, mais il peut aussi être muni exclusivement d'un système de reproduction (cylindres, cartons, mémoire électronique), ou être joué conjointement par ces deux systèmes.

Relativité restreinte, choc élastique. Source : http://data.abuledu.org/URI/50b222ee-relativite-restreinte-choc-elastique

Relativité restreinte, choc élastique

Collision élastique entre deux particules de même masse. Dans un accélérateur de particules il arrive qu'une particule de très haute énergie heurte une particule au repos et communique à cette dernière une partie de son énergie cinétique. Si les seuls échanges d'énergie concernent précisément cette énergie cinétique (conservation de la quantité de mouvement du système), on dit que le choc est élastique. Les formules traduisant la conservation du quadrivecteur du système formé par ces deux particules permet d'analyser la collision. En mécanique newtonienne la direction des deux particules après un choc forme un angle droit. Ce qui n'est pas le cas dans le cas des chocs entre particules relativistes où leurs directions forment un angle aigu. Ce phénomène est parfaitement visible sur les enregistrements de collisions effectués dans des chambres à bulles. Considérons un électron de masse m et d'énergie très élevée frappant un autre électron intialement au repos. Les vecteurs impulsions des deux particules sont tracés sur la figure ci-contre. Avant le choc l'impulsion de l'électron incident est vec{p}. Après le choc, les impulsions des deux électrons sont vec{p}_1 et vec{p}_2.

Schéma de la pile Volta. Source : http://data.abuledu.org/URI/50c26934-schema-de-la-pile-volta

Schéma de la pile Volta

Schéma résumant le principe de fonctionnement de la pile Volta : disque de cuivre, disque de zinc, solution aqueuse. Oxydation du zinc : libération de deux électrons. Réduction de deux molécules d'eau, dégagement gazeux d'hydrogène. Il se produit au niveau de chaque couche, qu'on appellera désormais une superposition d'un disque de cuivre et d'un disque de zinc, séparés par un tissu retenant la solution, une réaction d'oxydo-réduction. Il ne se passe rien au niveau du disque de cuivre. Les éléments participant à l'oxydation et à la réduction sont les éléments zinc et eau. Au niveau atomique, l'oxydation d'un atome de zinc, selon la réaction Zn → Zn2+ + 2 e- produit deux électrons qui vont transiter dans le circuit électrique, pour atteindre le disque de cuivre. Les électrons vont alors rencontrer deux molécules d'eau, et une autre réaction de réduction va se produire, selon la réaction 2 H2O + 2 e- → 2 OH- + H2. On constate ainsi que le disque de zinc est petit à petit consommé et qu'il y a production de dihydrogène.

Tennis à deux. Source : http://data.abuledu.org/URI/52c1bada-tennis-a-deux

Tennis à deux

Clone de "Tennis for Two", développé en 1958 sur un ordinateur relié à un oscilloscope. Une barre horizontale représente le sol (ou la table de tennis de table), tandis qu'une petite barre verticale représente le filet. Un point symbolise la balle. Les deux joueurs agissent sur celle-ci au moyen d'un objet bricolé pour l'occasion comportant un bouton pour effectuer une frappe et une molette pour régler l'angle de frappe, peut-être le tout premier paddle. Il est notamment le précurseur de Pong, le premier jeu vidéo populaire. Bien que les deux jeux soient des jeux de tennis, Tennis for Two se concentre sur la gestion de la balle, alors que le joueur contrôle la raquette dans Pong. Il a été créé par William Higinbotham (1910-1994) pour distraire les visiteurs durant des portes ouvertes au laboratoire national de Brookhaven. Après deux ans d'exposition, la machine a été démantelée. Le jeu était géré par un petit calculateur analogique constitué de dix amplificateurs opérationnels, à l'époque des tubes électroniques, ainsi que de quelques résistances, condensateurs et relais. L'affichage est réalisé par un oscilloscope à tube cathodique, et pour générer des lignes et une balle nettes, il est nécessaire de synchroniser précisément les signaux en fonction du temps, à cet effet, et seulement à cet endroit du système, des transistors sont utilisés. Source : http://fr.wikipedia.org/wiki/Tennis_for_Two.

Tube cathodique à balayage couleur. Source : http://data.abuledu.org/URI/50b3508c-tube-cathodique-a-balayage-couleur

Tube cathodique à balayage couleur

Tube à balayage couleur : 1-Canons à électrons, 2-Faisceaux d'électrons, 3-Bobine de focalisation, 4-Bobine de déviation,(balayage), 5-Connexion de l'anode, 6-Masque pour séparer les faisceaux pour le rouge, bleu et vert de l'image affichée, 7-Couche phosphorescente avec des zones réceptrices pour chaque couleur, 8-Gros plan sur la face intérieure de l'écran recouverte de luminophores pour chaque couleur. Dans le cas des téléviseurs et des écrans d’ordinateurs, toute la face du tube est parcourue selon un trajet bien défini, et l’image est créée en faisant varier l’intensité du flux d’électrons (le faisceau), et donc l’intensité lumineuse du spot, au long de son parcours. Le flux dans tous les téléviseurs modernes est dévié par un champ magnétique appliqué sur le col du tube par un « joug magnétique » (magnetic yoke en anglais), qui est composé de bobines (souvent deux) enroulées sur du ferrite et contrôlées par un circuit électronique. C’est un balayage par déflexion magnétique. Au cours du balayage, le faisceau parcourt de gauche à droite des lignes qui se succèdent de haut en bas (comme les lignes d’un livre), le retour à la ligne suivante et en début de page se fait à faisceau éteint.