Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Géométrie | Triangles (géométrie) | Triangles | Triangle | Photographie | Polygones | Pavage (mathématiques) | Cercles | Constructions géométriques | Formes (mathématiques) | Art abstrait | Issy-les-Moulineaux (Hauts-de-Seine) | Cercle | Bleu | Jaune | Hexagones | Carrés | Art contemporain | Carlo Roccella (né en 1956) | ...
Cercles circonscrits à un triangle. Source : http://data.abuledu.org/URI/518573ae-cercles-circonscrits-a-un-triangle

Cercles circonscrits à un triangle

Trois cercles circonscrits à des triangles.

Découpage d'un polygone en triangles. Source : http://data.abuledu.org/URI/52ac8124-decoupage-d-un-polygone-en-triangles

Découpage d'un polygone en triangles

Les triangles ont une importance capitale : en effet, tout polygone — surface délimitée par une ligne brisée fermée — peut se découper en triangles (maillage). Par ailleurs, tout triangle peut se découper en deux triangles rectangles. Ainsi, si l'on sait travailler sur un triangle rectangle, on sait travailler sur tout polygone. Par ailleurs, les triangles rectangles ont des propriétés particulières qui permettent des calculs faciles.

Réciproque du théorème de Thalès. Source : http://data.abuledu.org/URI/50c50076-reciproque-du-theoreme-de-thales

Réciproque du théorème de Thalès

Le théorème des milieux est un cas particulier de la réciproque du théorème de Thalès. Si un segment a pour extrémités les milieux de deux côtés d’un triangle, alors il est parallèle au troisième côté, et sa longueur est égale à la moitié de celle de ce troisième côté. Soient I et J les milieux respectifs des segments [AB] et [AC], alors (IJ) // (BC) et IJ = BC ÷ 2.

Théorème de la médiane. Source : http://data.abuledu.org/URI/50c501b4-theoreme-de-la-mediane

Théorème de la médiane

Médiane et hauteur d'un triangle. Le théorème de la médiane, ou théorème d'Apollonius, est une relation entre la longueur d'une médiane d'un triangle et la longueur de ses côtés. Soit ABC un triangle quelconque, et AI la médiane issue de A. On a alors la relation suivante : AB^2 + AC^2 = 2BI^2 + 2AI^2, Ou encore : AB^2 + AC^2 = {1 over 2} BC^2 + 2AI^2.

Théorème de Stewart. Source : http://data.abuledu.org/URI/50c504eb-theoreme-de-stewart

Théorème de Stewart

En géométrie euclidienne, le théorème de Stewart est une généralisation du théorème de la médiane, due au mathématicien Matthew Stewart dans les années 1746 : Théorème — Soit p une cévienne d'un triangle ABC divisant en X le côté a en deux parties x et y. On a alors la relation suivante : acdot (xy+p^{2}) = xcdot b^{2}+ycdot c^{2}. Matthew Stewart est un mathématicien écossais (1717-1785) reconnu comme un mathématicien important après la publication de son "General Theorems", en 1746.

Trace d'une perpendiculaire avec la méthode du 3 4 5. Source : http://data.abuledu.org/URI/52ac8562-trace-d-une-perpendiculaire-avec-la-methode-du-3-4-5

Trace d'une perpendiculaire avec la méthode du 3 4 5

Tracé d'une perpendiculaire en maçonnerie, méthode du 3-4-5 : le triangle est rectangle (théorème de Pythagore).

Triangle rectangle. Source : http://data.abuledu.org/URI/51857259-triangle-rectangle

Triangle rectangle

Triangle rectangle. Traduction en français Christophe Catarina.

Triangle rectangle. Source : http://data.abuledu.org/URI/5185731f-triangle-rectangle

Triangle rectangle

Triangle rectangle : Dans un triangle rectangle, l'hypoténuse (AB) est le côté non adjacent à l'angle droit, ou le côté opposé à l'angle droit (en C).

Triangle rectangle. Source : http://data.abuledu.org/URI/52ac82eb-triangle-rectangle

Triangle rectangle

Triangle ABC rectangle en C. Le côté le plus long d'un triangle rectangle est appelé "hypoténuse" (côté AB dans cette image), les deux autres sont les "côtés de l'angle droit". Le théorème de Pythagore énonce, avec les notation du dessin ci-contre, que AB2 = AC2 + BC2.

Triangle rectangle. Source : http://data.abuledu.org/URI/52ac8627-triangle-rectangle

Triangle rectangle

Triangle rectangle en C dont les côtés sont légendés en français : AB = Hypothénuse ; AC = Côté adjacent à l'angle A ; BC = Côté opposé à l'angle A.

Vitrail moderne à Issy-les-Moulineaux. Source : http://data.abuledu.org/URI/52da6624-vitrail-moderne-a-issy-les-moulineaux

Vitrail moderne à Issy-les-Moulineaux

Vitrail de la Trinité à Issy les Moulineaux, le fils, par Carlo Roccella (né en 1956). Source : http://fr.wikipedia.org/wiki/Carlo_Roccella

Vitrail moderne à Issy-les-Moulineaux. Source : http://data.abuledu.org/URI/52da678a-vitrail-moderne-a-issy-les-moulineaux

Vitrail moderne à Issy-les-Moulineaux

Vitrail de la Trinité, le père, à Issy les Moulineaux par Carlo Roccella (né en 1956). Source : http://fr.wikipedia.org/wiki/Trinit%C3%A9_chr%C3%A9tienne.

Calcul de l'aire du cercle avec Géogébra. Source : http://data.abuledu.org/URI/51e4dfeb-calcul-de-l-aire-du-cercle-avec-geogebra

Calcul de l'aire du cercle avec Géogébra

Calcul de l'aire du cercle avec Géogébra : rayon x demi-circonférence. On déduit d’une propriété analogue pour les polygones réguliers que l’aire d’un cercle égale son demi-périmètre multiplié par son rayon. le périmètre du polygone est à peu près 2πr alors qu’en redistribuant les triangles formés on remarque que son aire est à peu près πr2. Pour formaliser le « à peu près » il faudrait faire tendre le nombre de côtés du polygone vers l’infini, ce qui illustre déjà la nature « analytique » de π.

Connectivité triangulaire. Source : http://data.abuledu.org/URI/50bc1c4d-connectivite-triangulaire

Connectivité triangulaire

Dans le cadre des pavages, la connectivité géométrique indique la relation entre un élément de pavage (une case ou tuile) et ses voisins. On parlera de 3-connectivité lorsqu'une case comporte 3 voisins directs, comme ici avec le triangle. Les connectivités les plus classiques sont celles correspondant à un pavage régulier :

Construction du milieu d'un arc au compas. Source : http://data.abuledu.org/URI/50c5066b-construction-du-milieu-d-un-arc-au-compas

Construction du milieu d'un arc au compas

Construction au compas seul du milieu d'un arc : OABC est un parallélogramme de la forme OA=OB, I est le milieu de l'arc AB de centre O, D est le point de la demi-droite [OI) telle que CA=CD, alors OD=CI. En effet, CD^2=CA^2=2CO^2+OA^2. Ensuite il suffit d'appliquer le théorème de Pythagore dans les deux triangles rectangle COI et COD : CI^2=CO^2+OI^2=CO^2+OA^2, OD^2=CD^2-CO^2=CO^2+OA^2. Or cette figure est réalisable au compas seul et permet donc de placer le point I. Si l'on suppose donnés le point O et l'arc AB, on construit le point C intersection du cercle de centre B et passant par A avec le cercle de centre O et de rayon AB. On construit de même le point C' intersection du cercle de centre A passant par O et du cercle de centre O et de rayon AB. Le point D est à l'intersection des cercles de centre C et C' et passant par A et B. Le point I est à l'intersection des cercles de centre C et C' et de rayon OD.

Deux équerres dos à dos. Source : http://data.abuledu.org/URI/52acc1b3-deux-equerres-dos-a-dos

Deux équerres dos à dos

Deux équerres dos à dos, hypothénuse contre hypothénuse, formant un carré.

Équerre et triangle rectangle. Source : http://data.abuledu.org/URI/52acc054-equerre-et-triangle-rectangle

Équerre et triangle rectangle

Équerre et triangle rectangle : mesure des angles.

Évolution du triangle de Sierpinski. Source : http://data.abuledu.org/URI/5183e876-evolution-du-triangle-de-sierpinski

Évolution du triangle de Sierpinski

Évolution du triangle de Wacław Sierpinski (1882-1969) en 5 itérations. Un algorithme pour obtenir des approximations arbitrairement proches du triangle de Sierpiński peut s'écrire de la manière suivante : 1-Commencer à partir d'un triangle quelconque du plan. Le triangle canonique de Sierpiński se construit à partir d'un triangle équilatéral ayant une base parallèle à l'axe des abscisses ; 2-Tracer les trois segments qui joignent deux à deux les milieux des côtés du triangle, ce qui délimite 4 nouveaux triangles ; 3-Enlever le petit triangle central. Il y a maintenant trois petits triangles qui se touchent deux à deux par un sommet, dont les longueurs des côtés sont la moitié de celles du triangle de départ (obtenue par une homothétie de rapport 1/2), et dont l'aire est divisée par 4. 4-Recommencer à la deuxième étape avec chacun des petits triangles obtenus.

Fabrication d'un tangram. Source : http://data.abuledu.org/URI/50bc2091-fabrication-d-un-tangram

Fabrication d'un tangram

Dessin des sept pièces de tangram dans un carré, pour fabriquer le jeu.

Fonctions trigonométriques dans le cercle unité. Source : http://data.abuledu.org/URI/5309cf73-fonctions-trigonometriques-dans-le-cercle-unite

Fonctions trigonométriques dans le cercle unité

Représentation des fonctions trigonométriques dans le cercle unité. Le cercle trigonométrique, en revanche, permet la définition des fonctions trigonométriques pour tous les réels positifs ou négatifs, pas seulement pour des angles de mesure en radians comprise entre 0 et π/2. Sur ce cercle sont représentés certains angles communs, et sont indiquées leurs mesures en radians figurant dans l'intervalle [–2π, 2π], soit deux mesures par angle et même trois pour l'angle nul. Notez que les angles positifs sont dans le sens trigonométrique, contraire à celui des aiguilles d'une horloge, et les angles négatifs dans le sens horaire. Une demi-droite qui fait un angle θ avec la demi-droite positive Ox de l'axe des abscisses coupe le cercle en un point de coordonnées (cos θ, sin θ). Géométriquement, cela provient du fait que l'hypoténuse du triangle rectangle ayant pour sommets les points de coordonnées (0, 0), (cos θ, 0) et (cos θ, sin θ) est égale au rayon du cercle donc à 1. Le cercle unité peut être considéré comme une façon de regarder un nombre infini de triangles obtenus en changeant les longueurs des côtés opposés et adjacents mais en gardant la longueur de leur hypoténuse égale à 1. Source : http://fr.wikipedia.org/wiki/Fonction_trigonom%C3%A9trique.

Jeu de formes géométriques. Source : http://data.abuledu.org/URI/50eac99e-jeu-de-formes-geometriques

Jeu de formes géométriques

Jeu de plateau "Fits" : association de formes géométriques de couleur. Jeu créé par Charles B. Phillips et Ronald Wiecek en 1999 et édité par Ravensburger. Pour 2 à 4 joueurs, à partir de 8 ans, pour environ 5 à 15 minutes. Les joueurs cherchent à compléter une planche carrée à l'aide d'éléments géométriques de couleurs différentes le plus vite possible, tout en respectant des règles de placement relatives aux lignes de la planche et aux couleurs. Matériel : 4 planches de jeu, un support de pièces proposant 5 piles de pièces (2 pour chaque taille de triangle et 1 pour les carrés), 80 pièces de 4 couleurs différentes (rouge, jaune, vert et bleu) réparties de la manière suivante : 32 grands triangles, 32 petits triangles, 16 carrés ; et un dé spécial (2 faces "petit triangle", 2 faces "grand triangle", 1 face "carré" et 1 face "main").

Les trois polyèdres réguliers convexes à faces triangulaires. Source : http://data.abuledu.org/URI/5180ca36-les-trois-polyedres-reguliers-convexes-a-faces-triangulaires

Les trois polyèdres réguliers convexes à faces triangulaires

Plusieurs polyèdres (réguliers ou non) ont des faces triangulaires, comme le tétraèdre, l'octaèdre, l'icosaèdre et le grand icosaèdre. Les polyèdres dont toutes les faces sont des triangles équilatéraux sont appelés deltaèdres.

Nombres triangulaires. Source : http://data.abuledu.org/URI/5183f894-nombres-triangulaires

Nombres triangulaires

Représentation graphique des premiers nombres triangulaires : la représentation figurée permet un calcul pour les premières valeurs. Une définition formelle s'obtient par récurrence : le nombre triangulaire d'indice 1 est égal à 1, et un nombre triangulaire est égal à son prédécesseur additionné de son indice. Les premiers nombres triangulaires sont : 1, 3, 6, 10, 15, 21, 28, 36, 45, 55 ... Il existe différentes manières de calculer le nombre triangulaire d'indice n, l'une d'elles est graphique et s'obtient par un raisonnement d'arithmétique géométrique.

Pavage d'hexagones et de triangles. Source : http://data.abuledu.org/URI/50bc1b24-pavage-d-hexagones-et-de-triangles

Pavage d'hexagones et de triangles

Pavage régulier à partir de deux formes géométriques, un hexagone (jaune) et un triangle (bleu).

Pavage jaune, bleu et vert. Source : http://data.abuledu.org/URI/50bc1a63-pavage-jaune-bleu-et-vert

Pavage jaune, bleu et vert

Pavage régulier obtenu avec deux formes géométriques, un carré (jaune) et un triangle (bleu, vert).

Structure hexagonale des rayons de miel. Source : http://data.abuledu.org/URI/51803fab-structure-hexagonale-des-rayons-de-miel

Structure hexagonale des rayons de miel

Les hexagones réguliers peuvent se juxtaposer les uns les autres sans laisser aucune lacune, comme les carrés et les triangles équilatéraux, et sont ainsi utiles pour construire des pavages. Les cellules des rayons dans une ruche d'abeilles à miel sont hexagonales pour cette raison et parce que cette forme permet une utilisation efficace de l'espace et des matériaux de construction.

Théorème de Thalès de Milet (triangle). Source : http://data.abuledu.org/URI/505ef801-theoreme-de-thales-de-milet

Théorème de Thalès de Milet (triangle)

Illustration du théorème de Thalès : triangles inscrits dans un demi-cercle.

Triangle isocele. Source : http://data.abuledu.org/URI/5180c6c3-triangle-isocele

Triangle isocele

Un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Les deux angles adjacents au troisième côté sont alors de même mesure. Réciproquement, tout triangle ayant deux angles de même mesure est isocèle. Les triangles isocèles sont les seuls à admettre un axe de symétrie en dehors des triangles plats.

Triangle rectangle. Source : http://data.abuledu.org/URI/51e063be-triangle-rectangle

Triangle rectangle

Triangle rectangle.