Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Géométrie | Surfaces (mathématiques) -- Volumes | Prismes (géométrie) | Constructions géométriques | Carré | Polyèdres | Polygones | Angles | Compas | Géométrie des nombres | Parallèles (géométrie) | Perspective | Dessin -- Matériel | Géométrie de l'espace | Hexagones | Pentagones | Arithmétique | Cercle | Triangles | ...
Courbures d'une surface minimale. Source : http://data.abuledu.org/URI/51afab6e-courbures-d-une-surface-minimale

Courbures d'une surface minimale

Vue des plans définissant les courbures principales d'une surface minimale.

Amplitude (pendule). Source : http://data.abuledu.org/URI/51028618-amplitude-psf-svg

Amplitude (pendule)

Mesure de l'amplitude d'un angle de 90° par un balancier. Le balancier d’une horloge est un élément mobile animé d'un mouvement alternatif de va et vient. Il est horizontal ou circulaire au début et se nomme foliot ou balancier dans les montres actuelles. Il peut aussi prendre la forme d'un pendule, constitué d’une tige verticale, pouvant osciller autour d’un axe horizontal, et comportant un poids à son extrémité basse. Ce poids se présente généralement sous la forme d’un disque bombé, habituellement d’un métal lourd (tel que l’acier), afin de réduire l'influence des forces de résistance de l’air.

Arc et corde d'un cercle. Source : http://data.abuledu.org/URI/518303a8-arc-et-corde-d-un-cercle

Arc et corde d'un cercle

Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. La valeur de cette distance est appelée rayon du cercle. Une corde (en bleu) est un segment de droite dont les extrémités se trouvent sur le cercle. Un arc est une portion de cercle délimitée par deux points (en rouge). Un secteur circulaire est une partie du disque comprise entre deux rayons. Un angle au centre (vert) est un angle formé par deux rayons du cercle.

Balle et géométrie. Source : http://data.abuledu.org/URI/520bfc4e-balle-et-geometrie

Balle et géométrie

Balle, couleurs et formes géométriques.

Carrés géométriques. Source : http://data.abuledu.org/URI/52993272-carres-geometriques

Carrés géométriques

Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 : chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2×1/2 = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré.

Cercles circonscrits à un triangle. Source : http://data.abuledu.org/URI/518573ae-cercles-circonscrits-a-un-triangle

Cercles circonscrits à un triangle

Trois cercles circonscrits à des triangles.

Coloriage géométrique. Source : http://data.abuledu.org/URI/533289fa-coloriage-geometrique

Coloriage géométrique

Coloriage géométrique.

Composition ovale avec plans en couleurs en 1914. Source : http://data.abuledu.org/URI/54c4b55c-composition-ovale-avec-plans-en-couleurs-en-1914

Composition ovale avec plans en couleurs en 1914

Composition ovale avec plans en couleurs en 1914, par Piet Mondrian. Museum of Modern Art (New York).

Connectivité hexagonale. Source : http://data.abuledu.org/URI/50bc1d96-connectivite-hexagonale

Connectivité hexagonale

Dans le cadre des pavages, la connectivité géométrique indique la relation entre un élément de pavage (une case ou tuile) et ses voisins. On parlera de 6-connectivité lorsqu'une case (ici un hexagone) comporte 6 voisins directs.

Construction au compas du milieu d'un segment. Source : http://data.abuledu.org/URI/50c4fa69-construction-au-compas-du-milieu-d-un-segment

Construction au compas du milieu d'un segment

Construction au compas seul du milieu d'un segment : Le point A' est le symétrique de A par rapport à B. Les cercles de centre A' passant par A et de centre A passant par B se rencontrent en C et D. Le point D' est le symétrique de D par rapport à A. I est le quatrième point du parallélogramme AD'CI.

Construction d'une parallèle. Source : http://data.abuledu.org/URI/50c4f61d-construction-d-une-parallele

Construction d'une parallèle

Construction à la règle et au compas d'une parallèle à une droite passant par un point donné : La parallèle à la droite (AB) passant par un point C se construit à l'aide de la propriété de la droite des milieux. On construit le symétrique C1 du point C par rapport à A puis le symétrique C2 du point C1 par rapport à B. la droite recherchée est la droite (CC2). Le théorème des milieux est un cas particulier de la réciproque du théorème de Thalès.

Construction d'une perpendiculaire. Source : http://data.abuledu.org/URI/51a5ad5b-construction-d-une-perpendiculaire

Construction d'une perpendiculaire

Construction graphique de la perpendiculaire à un segment de droite quelconque.

Construction du milieu d'un arc au compas. Source : http://data.abuledu.org/URI/50c5066b-construction-du-milieu-d-un-arc-au-compas

Construction du milieu d'un arc au compas

Construction au compas seul du milieu d'un arc : OABC est un parallélogramme de la forme OA=OB, I est le milieu de l'arc AB de centre O, D est le point de la demi-droite [OI) telle que CA=CD, alors OD=CI. En effet, CD^2=CA^2=2CO^2+OA^2. Ensuite il suffit d'appliquer le théorème de Pythagore dans les deux triangles rectangle COI et COD : CI^2=CO^2+OI^2=CO^2+OA^2, OD^2=CD^2-CO^2=CO^2+OA^2. Or cette figure est réalisable au compas seul et permet donc de placer le point I. Si l'on suppose donnés le point O et l'arc AB, on construit le point C intersection du cercle de centre B et passant par A avec le cercle de centre O et de rayon AB. On construit de même le point C' intersection du cercle de centre A passant par O et du cercle de centre O et de rayon AB. Le point D est à l'intersection des cercles de centre C et C' et passant par A et B. Le point I est à l'intersection des cercles de centre C et C' et de rayon OD.

Coordonnées cartésiennes. Source : http://data.abuledu.org/URI/5183058a-coordonnees-cartesiennes

Coordonnées cartésiennes

En coordonnées cartésiennes planaires, la position d'un point A est donnée par les distances xA et yA. Le mot cartésien vient du mathématicien et philosophe français René Descartes.

Croisée d'ogives. Source : http://data.abuledu.org/URI/51c35298-croisee-d-ogives

Croisée d'ogives

Genèse de la croisée d'ogives. La projection orthogonale de cette croisée selon l’axe de chacune des nefs donne une demi-ellipse posée dans sa hauteur, très résistante en son sommet. Par chance, il existe une bonne approximation de cet arc pour cette époque où, sur le chantier, à défaut de bons moyens de calcul et de mesures précises il vaut mieux recourir à des tracés simples à exécuter : il s’agit d'un arc brisé composé de deux arcs de cercle centrés respectivement au premier et au troisième quart de la distance à franchir. Cette approximation est souvent observable à une légère déformation de la voûte de la croisée à l'endroit où elle se raccorde aux nefs.

Cylindre. Source : http://data.abuledu.org/URI/51fc1f14-cylindre

Cylindre

Cylindre avec hauteur et rayon.

Découpage d'un polygone en triangles. Source : http://data.abuledu.org/URI/52ac8124-decoupage-d-un-polygone-en-triangles

Découpage d'un polygone en triangles

Les triangles ont une importance capitale : en effet, tout polygone — surface délimitée par une ligne brisée fermée — peut se découper en triangles (maillage). Par ailleurs, tout triangle peut se découper en deux triangles rectangles. Ainsi, si l'on sait travailler sur un triangle rectangle, on sait travailler sur tout polygone. Par ailleurs, les triangles rectangles ont des propriétés particulières qui permettent des calculs faciles.

Définitions de la perspective. Source : http://data.abuledu.org/URI/50e7ecb6-definitions-de-la-perspective

Définitions de la perspective

Schéma pour définir les termes principaux dans le domaine de la perspective en géométrie : Ligne de terre, Sol ou géométral, Plan d'horizon, Ligne d'horizon, Tableau.

Deux équerres dos à dos. Source : http://data.abuledu.org/URI/52acc1b3-deux-equerres-dos-a-dos

Deux équerres dos à dos

Deux équerres dos à dos, hypothénuse contre hypothénuse, formant un carré.

Deux formes de pyramides. Source : http://data.abuledu.org/URI/51fc223f-deux-formes-de-pyramides

Deux formes de pyramides

Deux formes de pyramides.

Dodécaèdre. Source : http://data.abuledu.org/URI/50c4764e-dodecaedre

Dodécaèdre

Le dodécaèdre, un polyèdre régulier convexe. En 1811, Cauchy (1789-1857) s’intéresse dans son premier mémoire à l’égalité de polyèdres convexes dont les faces sont égales. Il propose une démonstration du théorème de Descartes-Euler, concernant les nombres de sommets, de faces et d'arêtes d'un polyèdre convexe. Sa preuve consiste à projeter le polyèdre en un graphe planaire suivant ce qui est aujourd’hui appelé une projection stéréographique. Cependant, Cauchy commit une erreur, en ne faisant pas d’hypothèse claire sur les polyèdres étudiés. Dans son second mémoire en 1812, il donna des formules pour calculer les angles diédraux.

Droite d'Euler. Source : http://data.abuledu.org/URI/518452dd-droite-d-euler

Droite d'Euler

En géométrie euclidienne, dans un triangle non équilatéral, l'orthocentre H, le centre de gravité ou isobarycentre G et le centre du cercle circonscrit \Omega sont alignés et ne sont pas confondus. On appelle droite d'Euler la droite passant par ces trois points. Traduction en français Christophe Catarina.

Éléments de l'algèbre géométrique. Source : http://data.abuledu.org/URI/529933bd-elements-de-l-algebre-geometrique

Éléments de l'algèbre géométrique

Interprétation des divers éléments d'une algèbre géométrique issue de l'espace vectoriel Euclidien 3D.

Équerre et triangle rectangle. Source : http://data.abuledu.org/URI/52acc054-equerre-et-triangle-rectangle

Équerre et triangle rectangle

Équerre et triangle rectangle : mesure des angles.

Équerre graduée. Source : http://data.abuledu.org/URI/52acc0f7-equerre-graduee

Équerre graduée

Équerre graduée de 0 à 20 centimètres.

Géométrie du treuil. Source : http://data.abuledu.org/URI/50e62f0c-geometrie-du-treuil

Géométrie du treuil

Géométrie d'un treuil, pour calculer le couple. En mécanique, un couple est l'effort en rotation appliqué à un axe. Il est ainsi nommé en raison de la façon caractéristique dont on obtient ce type d'action : un bras qui tire, un bras qui pousse, les deux forces étant égales et opposées. Lorsque le couple ne s'exerce pas rigoureusement dans l'axe, il se produit une rotation de cet axe (précession).

Géométrie du vélo horizontal. Source : http://data.abuledu.org/URI/51fb5f9a-geometrie-du-velo-horizontal

Géométrie du vélo horizontal

Géométrie du vélo horizontal.

Géométrie du vélo horizontal à traction directe. Source : http://data.abuledu.org/URI/51fb5847-geometrie-du-velo-horizontal-a-traction-directe

Géométrie du vélo horizontal à traction directe

Géométrie du vélo horizontal à traction directe : Un vélo couché à traction directe se différencie du vélo couché traditionnel par son pédalier, solidaire de la direction. La plupart des vélos couché sont dits "à propulsion". Leur géométrie est calquée sur celles des vélos droits, ou bicyclettes. La chaîne transmet la force du pédalier à la roue arrière, passant par toute la longueur du cadre. Si celui-ci n'est pas extrêmement rigide, une bonne partie de l'énergie fournie au pédalier est perdue. La géométrie du vélo à traction directe permet de minimiser cette perte en transmettant l'énergie à la roue avant. La conséquence est que le pédalier tourne avec la direction, nécessitant un apprentissage. L'appui sur les pédales influence la direction. On parle d'interaction pédalage/direction. Ce modèle fourni les paramètres recommandés afin d'obtenir un vélo qui soit le plus stable possible et dont l'interaction pédalage/direction soit des plus faibles. Les pourcentages indiquent l'importance de certains paramètres par rapport aux autres afin d'assurer une stabilité maximale. Plus le pourcentage est bas, moins une variation du paramètre a d'influence sur la conductabilité du vélo. La maîtrise du pilote est l'élément primordial. Une grande interaction pédalage-direction devient inexistante après plusieurs centaines de km. Respecter ces paramètres aide à avoir un vélo le plus stable possible. L'apprentissage fait le reste. En basse vitesse, c'est l'utilisateur/trice qui crée l'équilibre. A haute vitesse, les forces auto-stabilisantes sont prépondérantes. Un appui naturel de la jambe part du fémur du même côté. Pour que la force passe par l'axe D et ainsi annuler l'interaction PD, il faut inverser cet appui. Lorsque la jambe droite appuie, c'est la hanche côté gauche qui reçoit l'appui.

Goniomètre. Source : http://data.abuledu.org/URI/52acceeb-goniometre

Goniomètre

Goniomètre.

Hexaèdre. Source : http://data.abuledu.org/URI/51844ad7-hexaedre

Hexaèdre

Un des cinq Solides de Platon : l'hexaèdre (8 sommets, 12 arêtes, 6 faces). En géométrie euclidienne, un solide de Platon est un polyèdre régulier et convexe.

Identité remarquable. Source : http://data.abuledu.org/URI/518431a1-identite-remarquable

Identité remarquable

Visualisation géométrique de l'identité remarquable du second degré (a+b)^2 = a^2 + 2ab + b^2,

Identité remarquable. Source : http://data.abuledu.org/URI/5184321a-identite-remarquable

Identité remarquable

Représentation graphique de l’identité remarquable (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.

Intersection de deux droites. Source : http://data.abuledu.org/URI/50c50902-intersection-de-deux-droites

Intersection de deux droites

Construction au compas seul de l'intersection de deux droites (étape 1) : construction du point C' symétrique de C par rapport à (AB) et du point E sur (CD) tel que C'C=C'E.

Lois de la perspective. Source : http://data.abuledu.org/URI/50e7f782-lois-de-la-perspective

Lois de la perspective

Perspective avec lignes de fuite et point de fuite. La perspective est l'ensemble des lois permettant de représenter sur un plan des figures à trois dimensions. En art, notamment en peinture et en architecture, il faudrait parler des perspectives : diverses méthodes ont été utilisées pour donner l'illusion de la réalité tridimensionnelle.

Nombre pyramidal carré 30. Source : http://data.abuledu.org/URI/529c3fd6-nombre-pyramidal-carre-30

Nombre pyramidal carré 30

Représentation graphique du nombre pyramidal carré 30 = 1²+2²+3²+4² = 1+4+9+16.

Nombre triangulaire. Source : http://data.abuledu.org/URI/518444be-nombre-triangulaire

Nombre triangulaire

Le 28 est le septième nombre triangulaire ou encore le nombre triangulaire d'indice 7 : en arithmétique, un nombre triangulaire est un cas particulier de nombre figuré. Il correspond à un nombre entier positif égal au nombre de pastilles dans un triangle construit à la manière de cette figure. Source : p. 320, Die Gartenlaube (1887), Ernst Keil's Nachfolger.

Nombres trangulaires. Source : http://data.abuledu.org/URI/529c3b00-nombres-trangulaires

Nombres trangulaires

La somme de deux nombres triangulaires consécutifs forme un carré parfait.

Nombres triangulaires. Source : http://data.abuledu.org/URI/5183f894-nombres-triangulaires

Nombres triangulaires

Représentation graphique des premiers nombres triangulaires : la représentation figurée permet un calcul pour les premières valeurs. Une définition formelle s'obtient par récurrence : le nombre triangulaire d'indice 1 est égal à 1, et un nombre triangulaire est égal à son prédécesseur additionné de son indice. Les premiers nombres triangulaires sont : 1, 3, 6, 10, 15, 21, 28, 36, 45, 55 ... Il existe différentes manières de calculer le nombre triangulaire d'indice n, l'une d'elles est graphique et s'obtient par un raisonnement d'arithmétique géométrique.

Nombres triangulaires. Source : http://data.abuledu.org/URI/529c3b53-nombres-triangulaires

Nombres triangulaires

Somme de quatre nombres triangulaires (pair) : le nombre triangulaire d'indice n est somme de quatre nombres triangulaires. Ceci est vrai quelle que soit la parité de l'indice n. En effet, u14 est la somme de trois fois u7 et de u6 et u15 est la somme trois fois u7 et de u8.

Parallélograme. Source : http://data.abuledu.org/URI/51802eaf-pentagone-regulier-et-ses-elements

Parallélograme

Exemple de parallélogramme. Un parallélogramme, en géométrie, est un quadrilatère dont les côtés opposés sont parallèles deux à deux

Patron de pyramide pentagonale. Source : http://data.abuledu.org/URI/51fc21a3-patron-de-pyramide-pentagonale

Patron de pyramide pentagonale

Patron de pyramide pentagonale.

Pentagone régulier. Source : http://data.abuledu.org/URI/517f8e7d-pentagone-regulier

Pentagone régulier

Représentation géométrique d'un pentagone régulier.

Perspective cavalière à 90°. Source : http://data.abuledu.org/URI/50e7fb12-perspective-cavaliere-a-90-

Perspective cavalière à 90°

Comparaison entre les projections orthogonales sur les plans contenant les axes (géométrie descriptive) et la perspective cavalière : report des coordonnées. Pour effectuer une représentation en perspective cavalière, il faut choisir différents paramètres : 1) un plan frontal : un segment contenu dans ce plan, ou dans un plan parallèle, est représenté en vraie grandeur ; 2) un angle de fuite : les perpendiculaires au plan frontal, appelées fuyantes sont représentées dans cette direction ; 3) un coefficient de réduction : les longueurs représentées dans la direction de fuite sont multipliées par ce coefficient de réduction. De plus, l'alignement des points, le parallélisme des droites le rapport des longueurs de deux segments parallèles, et donc les milieux, sont conservés. En revanche, les longueurs, les aires, et les angles ne sont pas conservés dans les plans non frontaux. Les éléments cachés par les faces supposées opaques sont représentés en pointillés; les éléments visibles par l'observateur sont représentés en traits pleins.

Piste d'escrime. Source : http://data.abuledu.org/URI/53401765-piste-d-escrime

Piste d'escrime

Piste d'escrime : C) ligne centrale ; G) ligne de mise en garde ; D) zone des deux mètres ; R) zone de recul (sortie de piste). Une piste d'escrime mesure 14 mètres de long sur 1,5 à 2 mètres de large. Elle est marquée par des lignes perpendiculaires en divers endroits (centre de la piste, ligne de mise en garde, et limite arrière, outre les 2 derniers mètres doivent être clairement identifiés). Si un tireur sort par l'un des bords latéraux de la piste, l'action est interrompue et les tireurs se remettent en garde en ayant néanmoins fait avancer d'un mètre l'adversaire du tireur qui est sorti ; ce dernier devant donc reculer et se remettre à distance. Si un tireur sort des deux pieds par le bout arrière de la piste, il est considéré comme touché. Source : http://fr.wikipedia.org/wiki/Escrime

Plans de direction de l'anatomie de l'homme. Source : http://data.abuledu.org/URI/531b1f76-plans-de-direction-de-l-anatomie-de-l-homme

Plans de direction de l'anatomie de l'homme

Plans de direction de l'anatomie de l'homme : A) coupe transversale (en vert) ; B) coupe sagittale (en bleu) ; C) coupe frontale (en rouge).

Prisme droit. Source : http://data.abuledu.org/URI/5184be7c-prisme-droit

Prisme droit

Un prisme droit.

Prisme droit et prisme oblique. Source : http://data.abuledu.org/URI/5184be2c-prisme-droit-et-prisme-oblique

Prisme droit et prisme oblique

Prisme droit (A, jaune) et prisme oblique (B, bleu). Lorsque le plan est perpendiculaire à la droite génératrice (d), le prisme est appelé prisme droit. Lorsque le prisme est droit, les faces latérales sont des rectangles.

Prisme hexagonal. Source : http://data.abuledu.org/URI/518038f5-prisme-hexagonal

Prisme hexagonal

Prisme hexagonal.

Prisme triangulaire. Source : http://data.abuledu.org/URI/5184bd4c-prisme-triangulaire

Prisme triangulaire

Vue tridimensionnelle d'un prisme triangulaire.

Prisme tronqué. Source : http://data.abuledu.org/URI/5184bcb6-prisme-tronque

Prisme tronqué

Prisme tronqué.