Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Ondes électromagnétiques | Lumière -- Propagation | Lumière | Lumière, Théorie ondulatoire de la | Physique | Ondes électromagnétiques -- Propagation | Spectres | Photons | Absorption | Ondes | Lumière -- Absorption | Ondes -- Propagation | Énergie solaire -- Recherche | Rayonnement solaire | Réflexion (optique) | Opacifiants | Transmission | Photoabsorption | Géométrie | ...
Absorption entre niveaux atomiques. Source : http://data.abuledu.org/URI/50b3d036-absorption-entre-niveaux-atomiques

Absorption entre niveaux atomiques

Processus d'interaction entre la lumière et la matière : illustration du phénomène d'absorption entre les niveaux atomiques : Le photon d'énergie h u fait passer l'atome de son état fondamental 1 vers l'état excité 2. Lorsqu'il est éclairé par un rayonnement électromagnétique (la lumière), un atome peut passer d'un état n à un état n' > n, en prélevant l'énergie correspondante sur le rayonnement. Ce processus est résonnant : la fréquence du rayonnement omega doit être proche d'une fréquence de Bohr atomique pour qu'il puisse se produire. Les fréquences de Bohr atomiques sont définies par hbaromega_{nn'}=(E_{n'}-E_n), où E_{n'} > E_n sont les énergies des états n' et n. On peut interpréter ce processus comme l'absorption d'un photon du rayonnement (d'énergie hbaromega=h u) faisant passer l'atome du niveau d'énergie E_n vers le niveau d'énergie E_{n'}. La condition de résonance correspond alors à la conservation de l'énergie.

Diffusion de Rayleigh des ondes électromagnétiques. Source : http://data.abuledu.org/URI/50be596f-diffusion-de-rayleigh-des-ondes-electromagnetiques

Diffusion de Rayleigh des ondes électromagnétiques

Diffusion Rayleigh (ou diffusion élastique) d'une onde électromagnétique par un atome. Le nuage électronique est déformé par le champ électrique de l'onde. Le barycentre des charges négatives oscille donc par rapport au noyau (positif), il se crée un dipôle électrostatique vibrant qui rayonne dans toutes les directions. L'onde électromagnétique peut être décrite comme un champ électrique oscillant couplé à un champ magnétique oscillant à la même fréquence. Ce champ électrique va déformer le nuage électronique des atomes, le barycentre des charges négatives oscillant ainsi par rapport au noyau (charge positive). Le dipôle électrostatique ainsi créé rayonne, c'est ce rayonnement induit qui constitue la diffusion Rayleigh.

Domaines du spectre électromagnétique. Source : http://data.abuledu.org/URI/50a8f925-domaines-du-spectre-electromagnetique

Domaines du spectre électromagnétique

Régions approximatives en fréquence et en longueur d'onde du spectre électromagnétique. Le spectre électromagnétique est la décomposition du rayonnement électromagnétique selon ses différentes composantes en termes de fréquence (ou période), d'énergie des photons ou encore de longueur d’onde associée, les quatre grandeurs u (fréquence), T (période), E (énergie) et lambda (longueur d’onde) étant liées deux à deux par : la constante de Planck h, (approx. 6,626069×10-34 J⋅s ≈ 4,13567 feV/Hz) et la vitesse de la lumière c, (exactement 299 792 458 m/s).

Émission stimulée. Source : http://data.abuledu.org/URI/50b3d142-emission-stimulee

Émission stimulée

Processus d'interaction entre la lumière et la matière : illustration du phénomène d'émission stimulée ; la désexcitation de l'atome est stimulée par l'arrivée du photon incident. Le photon émis vient s'ajouter au champ incident : il y a amplification. Un atome dans l'état n' peut se « désexciter » vers le niveau n sous l'effet d'une onde électromagnétique, qui sera alors amplifiée. Comme pour l'absorption, ce processus n'est possible que si la fréquence du rayonnement omega est proche de la fréquence de Bohr omega_{nn'}. On peut l'interpréter comme l'émission d'un photon d'énergie hbaromega qui vient s'« ajouter » au rayonnement.

Le spectre électromagnétique. Source : http://data.abuledu.org/URI/50a81854-le-spectre-electromagnetique

Le spectre électromagnétique

Proposition d'illustration du spectre électromagnétique, le spectre visible correspond aux couleurs en bas du schéma. La lumière visible, appelée aussi spectre visible ou spectre optique est la partie du spectre électromagnétique qui est visible pour l'œil humain. Il n'y a aucune limite exacte au spectre visible : l'œil adapté à la lumière possède généralement une sensibilité maximale à la lumière de longueur d'onde d'environ 550 nm, ce qui correspond à une couleur jaune-verte. Généralement, on considère que la réponse de l'œil couvre les longueurs d'ondes de 380 nm à 780 nm bien qu'une gamme de 400 nm à 700 nm soit plus commune. Les fréquences correspondantes vont de 350 à 750 THz (10¹² Hz). Cette gamme de longueur d'onde est importante pour le monde vivant car des longueurs d'ondes plus courtes que 380 nm endommageraient la structure des molécules organiques tandis que celles plus longues que 720 nm seraient absorbées par l'eau, constituant abondant du vivant. Ces extrêmes correspondent respectivement aux couleurs violet et rouge. Cependant, l'œil peut avoir une certaine réponse visuelle dans des gammes de longueurs d'onde encore plus larges. Les longueurs d'onde dans la gamme visible pour l'œil occupent la majeure partie de la fenêtre optique, une gamme des longueurs d'onde qui sont facilement transmises par l'atmosphère de la Terre.

Onde électromagnétique. Source : http://data.abuledu.org/URI/50a8d109-onde-electromagnetique

Onde électromagnétique

Représentation d'une onde électromagnétique : oscillation couplée du champ électrique et du champ magnétique, modèle du dipôle vibrant. Une onde électromagnétique monochromatique peut se modéliser par un dipôle électrostatique vibrant, ce modèle reflétant convenablement, par exemple, les oscillations du nuage électronique d'un atome intervenant dans la diffusion Rayleigh (modèle de l'électron élastiquement lié).

Onde électromagnétique. Source : http://data.abuledu.org/URI/50b346bb-onde-electromagnetique

Onde électromagnétique

Onde électromagnétique : oscillation couplée du champ électrique et du champ magnétique, modèle du dipôle vibrant. Le vecteur \vec{k} indique la direction de propagation de l'onde. On ne peut en fait voir le photon que comme une particule quantique, c’est-à-dire un objet mathématique défini par sa fonction d’onde qui donne la probabilité de présence. Attention à ne pas confondre cette fonction et l’onde électromagnétique classique. Ainsi, l’onde électromagnétique, c’est-à-dire la valeur du champ électrique et du champ magnétique en fonction de l’endroit et du moment (\vec{E}(\vec{x},t) et \vec{B}(\vec{x},t)), a donc deux significations. Fonction macroscopique : lorsque le flux d’énergie est suffisamment important, ce sont les champs électrique et magnétique mesurés par un appareil macroscopique (par exemple antenne réceptrice, un électroscope ou une sonde de Hall) ; Fonction microscopique : elle représente la probabilité de présence des photons, c’est-à-dire la probabilité qu’en un endroit donné il y ait une interaction quantifiée (c’est-à-dire d’une énergie hν déterminée).

Spectre des ondes électromagnétiques. Source : http://data.abuledu.org/URI/50a94947-spectre-des-ondes-electromagnetiques

Spectre des ondes électromagnétiques

Classification des ondes électromagnétiques en fonction de leur longueur d'onde, de leur fréquence ou de l'énergie des photons : Un spectre électromagnétique est la décomposition d'un rayonnement électromagnétique en fonction de sa longueur d'onde, ou, de manière équivalente, de sa fréquence (via l'équation de propagation) ou de l'énergie de ses photons.

Absorption de la chlorophylle. Source : http://data.abuledu.org/URI/50e41760-absorption-de-la-chlorophylle

Absorption de la chlorophylle

Grahique du spectre d'absorption de la chlorophylle : en vert le spectre d'absorption de la chlorophylle a et en rouge le spectre d'absorption de la chlorophylle b. Le spectre visible se situe approximativement entre 380 nm à 780 nm bien qu'une gamme de 400 nm à 700 nm soit plus commune. La lumière perçue comme « verte » par l’œil et le cerveau humain a une longueur d'onde, selon les notions de la couleur « verte », approximativement entre 490 et 570 nanomètres. On remarque sur le graphique que l’absorbance de la chlorophylle est moindre pour cette plage du spectre électromagnétique. La chlorophylle absorbe donc la majeure partie du spectre visible sauf la lumière verte. La lumière rouge a une longueur d'onde de 620-750nm et une fréquence de 400-484THz. La région du rouge atteint un maximum de 660-670 nm pour la Chlorophylle A et aux alentours de 635-645 nm pour la Chlorophylle B. Les plantes ont un grande besoin des ondes rouges sauf celles beaucoup plus longues que 670 nm. La lumière bleue a une longueur d'onde de 450-495nm et une fréquence de 606-668THz. La photosynthèse fonctionne le mieux grâce aux ondes de la couleur rouge, et à moindre degré à celles de la couleur bleue. Mais certaines plantes ont un plus grand besoin de bleu que d'autres pour une croissance saine - notamment pour que les fleurs éclosent et pour que les fruits poussent.

Effet Doppler. Source : http://data.abuledu.org/URI/50a77081-effet-doppler

Effet Doppler

Schéma de l'éffet Doppler mesurant le décalage de fréquence d’une onde acoustique ou électromagnétique entre la mesure à l'émission (1) et la mesure à la réception (2) lorsque la distance entre l'émetteur (A) et le récepteur (B) varie au cours du temps.

Effet Doppler-Fizeau. Source : http://data.abuledu.org/URI/50a76f10-effet-doppler-fizeau

Effet Doppler-Fizeau

Schéma représentant les ondes émises par une source se déplaçant de la droite vers la gauche. La fréquence est plus élevée à gauche (à l'avant de la source) qu'à droite. L'effet Doppler ou effet Doppler-Fizeau est le décalage de fréquence d’une onde acoustique ou électromagnétique entre la mesure à l'émission et la mesure à la réception lorsque la distance entre l'émetteur et le récepteur varie au cours du temps. Si on désigne de façon générale ce phénomène physique sous le nom d'effet Doppler, on réserve le terme d'« effet Doppler-Fizeau » aux ondes lumineuses.

Horizon du radar. Source : http://data.abuledu.org/URI/5232fa56-horizon-du-radar

Horizon du radar

Les ondes électromagnétiques suivent les règles de l’optique pour les hautes fréquences (>100 MHz). Même le faisceau d’un radar pointant vers l’horizon va s’éloigner de la surface de la Terre parce que celle-ci a une courbure. Une cible qui se trouve à une distance à l’intérieur de la portée maximale du radar mais sous l’horizon du radar ne pourra donc pas être détectée, elle se trouve dans la «zone d’ombre». Cependant, l’horizon du radar est à une plus grande distance que l'horizon optique en ligne directe parce que la variation de l’indice de réfraction avec l’altitude dans l’atmosphère permet à l’onde radar de courber. Le rayon de courbure de la trajectoire de l’onde est ainsi plus grand que celui de la Terre ce qui permet au faisceau radar de dépasser la ligne de visée directe et donc de réduire la zone d’ombre. Le rayon de courbure de la Terre est de 6,4×106 m alors que celui de l’onde radar est de 8,5×106 m.

Opacité électromagnétique de l'atmosphère. Source : http://data.abuledu.org/URI/50be41a2-opacite-electromagnetique-de-l-atmosphere

Opacité électromagnétique de l'atmosphère

Opacité électromagnétique (ou transmittance) de l'atmosphère en fonction de la longueur d'onde (jusqu'à 1km). L’absorption optique est une autre propriété importante de l'atmosphère. Différentes molécules absorbent différentes longueurs d'onde de radiations. Par exemple, l'O2 et l'O3 absorbent presque toutes les longueurs d'onde inférieures à 300 nanomètres. L'eau (H2O) absorbe la plupart des longueurs d'onde au-dessus de 700 nm, mais cela dépend de la quantité de vapeur d'eau dans l'atmosphère. Quand une molécule absorbe un photon, cela accroît son énergie. Quand les spectres d'absorption des gaz de l'atmosphère sont combinés, il reste des « fenêtres » de faible opacité, autorisant le passage de certaines bandes lumineuses. La fenêtre optique va d'environ 300 nm (ultraviolet-C) jusqu'aux longueurs d'onde que les humains peuvent voir, la lumière visible (communément appelé lumière), à environ 400–700 nm et continue jusqu'aux infrarouges vers environ 1100 nm. Il y a aussi des fenêtres atmosphériques et radios qui transmettent certaines ondes infrarouges et radio sur des longueurs d'onde plus importantes. Par exemple, la fenêtre radio s'étend sur des longueurs d'onde allant de un centimètre à environ onze mètres. Le graphe ci-dessus représente 1-T (exprimé en %) (T:transmittance)

Principe de réflexion angulaire. Source : http://data.abuledu.org/URI/50a2a7e0-principe-de-reflexion-angulaire

Principe de réflexion angulaire

Principe de réflexion angulaire par analogie avec un miroir. La réflexion est le brusque changement de direction d'une onde à l'interface de deux milieux. Après réflexion l'onde reste dans son milieu de propagation initial. Ce phénomène se rencontre pour différents types d'ondes : réflexion optique ou réflexion des ondes électromagnétiques ; réflexion acoustique ou réflexion des ondes mécaniques ; réflexion électrique.

Radiotriangulation. Source : http://data.abuledu.org/URI/518b7df2-radiotriangulation

Radiotriangulation

Principe de fonctionnement de la radiotriangulation. Dans le cas d'ondes électromagnétiques (par exemple des ondes radio), la position peut se déterminer avec une antenne directionnelle (c'est-à-dire une antenne ne captant que les ondes venant d'une direction donnée) ; l'orientation pour laquelle le signal est le plus fort donne la direction de l'émetteur, il suffit alors de faire plusieurs relevés pour avoir la position de l'émetteur (radiogoniométrie). Cette méthode était par exemple utilisée durant l'occupation allemande de la France pour détecter les émetteurs radio clandestins.

Spectre d'irradiance solaire. Source : http://data.abuledu.org/URI/5218facb-spectre-d-irradiance-solaire

Spectre d'irradiance solaire

Le Soleil émet un rayonnement électromagnétique dans lequel on trouve notamment les rayons cosmiques, gamma, X, la lumière visible, l’infrarouge, les micro-ondes et les ondes radios en fonction de la fréquence d’émission. Tous ces types de rayonnement électromagnétique émettent de l’énergie. Le niveau d’irradiance (le flux énergétique) arrivant à la surface de la Terre dépend de la longueur d’onde du rayonnement solaire.