Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Photographie | Microscopes | Microscopes électroniques | Dessins et plans | Clip art | Technique -- Histoire | Microscopes électroniques à balayage | Cristaux de neige | Flocons de neige | Observation (méthode scientifique) | Dendrites (cristallographie) | Dessins techniques | Hexagones | Lentilles (optique) | hiver | Histoire des techniques | Neige | Ernst Ruska (1906 - 1988) | Insectes | Physiciens allemands | ...
Anciens microscopes. Source : http://data.abuledu.org/URI/5392e3a7-anciens-microscopes

Anciens microscopes

Microscopes du 18ème siècle, Musée des Arts et Métiers, Paris.

Dessin de microscope. Source : http://data.abuledu.org/URI/53935d3f-dessin-de-microscope

Dessin de microscope

Dessin de microscope non légendé.

Dessin de microscope à légender. Source : http://data.abuledu.org/URI/53935d96-dessin-de-microscope-a-legender

Dessin de microscope à légender

Dessin de microscope à légender.

Différents types de microscopes. Source : http://data.abuledu.org/URI/5392e441-differents-types-de-microscopes

Différents types de microscopes

Différents types de microscopes.

Flocon de neige. Source : http://data.abuledu.org/URI/513e3d06-flocon-de-neige

Flocon de neige

Flocon de neige au microscope : dendrites d'un flocon de neige (microscopie optique). Une dendrite est un cristal ramifié, en forme d'arbre (du grec "dendron") : il présente un tronc avec des branches. Les dendrites apparaissent lors de la solidification.

Icone de microscope. Source : http://data.abuledu.org/URI/53935c72-icone-de-microscope

Icone de microscope

Icone de microscope (open clipart).

Icone de microscope. Source : http://data.abuledu.org/URI/53935cc8-icone-de-microscope

Icone de microscope

Icone de microscope.

Microscope. Source : http://data.abuledu.org/URI/5026d0b1-microscope
Microscope. Source : http://data.abuledu.org/URI/503bd578-microscope

Microscope

Photographie d'un petit microscope optique

Microscope. Source : http://data.abuledu.org/URI/53cce6ee-microscope

Microscope

Dessin de microscope.

Microscope à fluorescence. Source : http://data.abuledu.org/URI/5393096e-microscope-a-fluorescence

Microscope à fluorescence

Filtres dans un microscope à fluorescence.

Mosaïque sur la recherche scientifique en 1958. Source : http://data.abuledu.org/URI/53930878-mosaique-sur-la-recherche-scientifique-en-1958

Mosaïque sur la recherche scientifique en 1958

Mosaïque sur la recherche scientifique en maïsiculture en 1958, 210 Bornaische Straße, Leipzig, en Allemagne.

Observation au microscope. Source : http://data.abuledu.org/URI/53930b44-observation-au-microscope

Observation au microscope

Observation au microscope : 1) oculaire, 2) mise au point, 3) objectif, 4) porte-échantillon, 5) miroir.

Pollen de Lavande au microscope. Source : http://data.abuledu.org/URI/5095585b-pollen-de-lavande

Pollen de Lavande au microscope

Photo d'un pollen de lavande au microscope optique.

Cristaux de neige en fausses couleurs. Source : http://data.abuledu.org/URI/52bf29e2-cristaux-de-neige-en-fausses-couleurs

Cristaux de neige en fausses couleurs

Flocons de neige observés avec un Microscope Electronique à Balayage (MEB) à basse température. L'image est en fausses couleurs, une pratique courament utilisée pour ce type d'image. Source : United States Department of Agriculture.

Faisceau électronique. Source : http://data.abuledu.org/URI/50a8ec9c-faisceau-electronique

Faisceau électronique

Schéma des rayons dans le faisceau électronique du MET : rayon incident, échantillon, lentilles, figure de diffraction, image.

Flocon de neige hexagonal. Source : http://data.abuledu.org/URI/513e3e4a-flocon-de-neige-hexagonal

Flocon de neige hexagonal

Flocon de neige hexagonal (micrographie électronique) présentant des extensions dendritiques.

Insecte doré. Source : http://data.abuledu.org/URI/50b3555d-insecte-dore

Insecte doré

Un insecte recouvert d'or avant d'être examiné avec un microscope électronique à balayage. Les matériaux appelés à être regardés sous un microscope électronique peuvent nécessiter un traitement afin de produire un échantillon approprié. La technique requise varie selon le modèle et l'analyse requise. Le "Freeze-fracture" ou "gel-etch" : mode de préparation particulièrement utile pour l'examen des membranes de lipides et des protéines intégrées en vue de face. Les tissus frais ou cellules en suspension sont congelés rapidement, puis fracturés par simple cassure ou à l'aide d'un microtome, tout en étant maintenus à la température de l'azote liquide. La surface froide fracturée (parfois «gravée» en augmentant la température à environ --100 °C pendant plusieurs minutes pour que la glace sublime) est ensuite contrastée avec des vapeurs de platine ou d'or, à un angle moyen de 60° dans un évaporateur à vide. Une deuxième couche de carbone, pulvérisé perpendiculairement au plan moyen de la surface est souvent appliquée pour améliorer la stabilité du revêtement. Le spécimen est ramené à température et pression ambiante, puis la réplique métallique extrêmement fragile est détachée de la matière biologique sous-jacente par une délicate digestion chimique par des acides, une solution d'hypochlorite ou des détergents SDS. Le reste, encore flottant, est soigneusement lavé des résidus chimiques, soigneusement accroché sur les grilles du microscope, séché puis observé dans le MET.

Lentille magnétique au laboratoire de Maier-Leibnitz. Source : http://data.abuledu.org/URI/50a8ee4f-lentille-magnetique-au-laboratoire-de-maier-leibnitz

Lentille magnétique au laboratoire de Maier-Leibnitz

Lentille magnétique au laboratoire de Maier-Leibnitz (physicien nucléaire allemand). Une lentille magnétique est un dispositif produisant un champ magnétique à symétrie de révolution, utilisé dans des appareils comme les microscopes électroniques pour focaliser les faisceaux d'électrons de la même façon que les lentilles en verre sont utilisées dans les appareils d'optique photonique.

Microscope électronique. Source : http://data.abuledu.org/URI/50a8dd82-microscope-electronique

Microscope électronique

Schéma du faisceau d'électrons dans un MET : 1 : colonne, 2 : source d'électrons, 3 : électrons, 4 : cathode, 5 : anode, 6 : lentilles condenseur, 7 : échantillon, 8 : lentilles diffraction, 9 : lentilles projection, 10 : détecteur. La microscopie électronique en transmission (MET ou TEM en anglais pour "Transmission Electron Microscopy") est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre. Les images obtenues ne sont généralement pas explicites, et doivent être interprétées à l'aide d'un support théorique. L'intérêt principal de ce microscope est de pouvoir combiner cette grande résolution avec les informations de l'espace de Fourier, c'est-à-dire la diffraction. Il est aussi possible d'étudier la composition chimique de l'échantillon en étudiant le rayonnement X provoqué par le faisceau électronique. Contrairement aux microscopes optiques, la résolution n'est pas limitée par la longueur d'onde des électrons, mais par les aberrations dues aux lentilles magnétiques.

Microscope électronique d'Ernst Ruska. Source : http://data.abuledu.org/URI/50a8df67-microscope-electronique-d-ernst-ruska

Microscope électronique d'Ernst Ruska

Réplique (1980) du premier microscope électronique d'E. Ruska, 1933, physicien allemand qui a reçu le prix Nobel de physique en 1986 pour cette invention. Elle consiste à placer un échantillon suffisamment mince sous un faisceau d'électrons, et d'utiliser un système de lentilles magnétiques pour projeter l'image de l'échantillon sur un écran phosphorescent qui transforme l'image électronique en image optique. Pour les échantillons cristallins, un autre mode d'utilisation consiste à visualiser le cliché de diffraction de l'échantillon. les applications de la microscopie électronique couvrent un très vaste domaine, de l'observation d'échantillons biologiques, comme le noyau des cellules à l'analyse d'échantillons industriels dans la métallurgie ou l'industrie des semi-conducteurs.

Microscope électronique de Ruska. Source : http://data.abuledu.org/URI/50b35363-microscope-electronique-de-ruska

Microscope électronique de Ruska

Microscope électronique construit par Ernst Ruska en 1933. Suite aux élaborations théoriques de Louis de Broglie en 1924, on a pu prouver en 1926 que des champs magnétiques ou électrostatiques pouvaient être utilisés comme lentilles pour les faisceaux d'électrons. Le premier prototype de microscope électronique a été construit en 1931 par les ingénieurs allemands Ernst Ruska et Max Knoll. Ce premier instrument grossissait au mieux les objets de quatre cent fois. Deux ans plus tard, Ruska construisit un microscope électronique qui dépassait la résolution possible d'un microscope optique. Reinhold Rudenberg, le directeur scientifique de Siemens, a breveté le microscope électronique en 1931, stimulé par une maladie dans la famille, pour rendre visible le virus de la poliomyélite.

Pollens au microscope électronique. Source : http://data.abuledu.org/URI/53930cf6-pollens-au-microscope-electronique

Pollens au microscope électronique

Pollens de quelques plantes courantes : Tournesol, Volubilis, Rose trémière (Sildalcea malviflora), lys (Lilium auratum), onagre (Oenothera fruticosa) et Ricin commun (Ricinus communis). Image aggrandie 500 fois : la particule en forme de grain de café dans le coin inférieur gauche mesure dans les 50 μm.Source : Dartmouth Electron Microscope Facility

Structure de corne de narval. Source : http://data.abuledu.org/URI/5378c1f1-structure-de-corne-de-narval

Structure de corne de narval

Micrographie électronique d'un tube qui transporte les terminaisons nerveuses vers le centre de la dent (agrandissement x 10 000). Source : Paffenbarger Research Center, National Institute of Standards and Technology.

Structure interne d'un grêlon. Source : http://data.abuledu.org/URI/5234a2b7-structure-interne-d-un-grelon

Structure interne d'un grêlon

Coupe d'un grêlon au microscope électronique.

Une fourmi au microscope électronique. Source : http://data.abuledu.org/URI/50b35443-une-fourmi-au-microscope-electronique

Une fourmi au microscope électronique

Image partielle d'une fourmi au microscope électronique à balayage. À la différence du MET, où le faisceau d'électrons à haute tension porte l'image de l'échantillon, le faisceau d'électrons du microscope électronique à balayage MEB (ou SEM en anglais) ne peut donner à aucun moment une image complète de l'échantillon. Le SEM produit des images par sondage de l'échantillon avec un faisceau d'électrons qui, concentré, est analysé sur une zone rectangulaire de l'échantillon ("raster scanning"). Sur chaque point sur l'échantillon le faisceau d'électrons incident perd de l'énergie. Cette perte d'énergie est convertie en autres formes, comme la chaleur, l'émission d'électrons secondaires de basse énergie, l'émission de lumière (cathodoluminescence) ou l'émission de rayons X . L'afficheur du SEM représente l'intensité variable de l'un de ces signaux dans l'image, dans une position correspondant à la position du faisceau sur l'échantillon lorsque le signal a été généré. Dans l'image de la fourmi de droite, l'image a été construite à partir des signaux produits par un détecteur d'électrons secondaires, le mode d'imagerie conventionnelle normal de la plupart des SEM. En règle générale, la résolution de l'image d'un SEM est d'environ un ordre de grandeur plus faible que celle d'un MET. Toutefois, parce que l'image du SEM repose sur les processus de surface plutôt que sur la transmission, il est en mesure de livrer des images d'objets de plusieurs centimètres avec une grande profondeur de champ, dépendant de la conception et du réglage de l'instrument, et il peut ainsi produire des images qui sont une bonne représentation en trois dimensions de la structure de l'échantillon.