Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Lumière, Théorie ondulatoire de la | Lumière | Lumière -- Propagation | Dessins et plans | Ondes | Dix-neuvième siècle | Gravure | Physique | Couleurs | Photographie | Doppler, Effet | Savants allemands | Ondes -- Propagation | Interférence (optique) | Ondes -- Diffraction | Diffraction | Savants français | Ombres | Christiaan Huygens (1629-1695) | Lentilles (optique) | ...
Appareil de Fizeau. Source : http://data.abuledu.org/URI/50a7930f-appareil-de-fizeau

Appareil de Fizeau

L'expérience de Fizeau. L est la lumière, S1 le 1e miroir, Z la roue dentée, S2 le 2e miroir, B l'observateur. Le principe de l'expérience est le suivant : la roue dentée est mise en rotation, la source lumineuse est réfléchie par un premier miroir semi-transparent, franchit une échancrure de la roue, parcourt la distance d, se réfléchit sur un miroir lointain, parcourt à nouveau la distance d, et arrive à nouveau sur la roue dentée. Mais celle-ci, entre-temps, a légèrement tourné : la lumière réfléchie peut tomber sur une dent et donc être bloquée, ou passer par une échancrure suivante. En mesurant le temps t qu'il a fallu à la roue pour devenir bloquante, à partir de sa vitesse de rotation (mesurée par l'appareil), et de la distance parcourue (également connue : 2d), on calcule la vitesse de la lumière c : c = 2d/t.

Christian Huygens. Source : http://data.abuledu.org/URI/50a58dd1-christian-huygens

Christian Huygens

Portrait relief de Christian Huygens (1629-1695) par Jean-Jacques Clerion (1637-1714) : mathématicien, astronome et physicien néerlandais, connu pour ses arguments selon lesquels la lumière est composée d'ondes. En réponse aux articles d'Isaac Newton sur la lumière, en 1672, il se lance dans l'étude de la nature de la lumière, à la suite de savants tels que Rasmus Bartholin. Il découvre en 1677, grâce aux propriétés des cristaux et de leur coupe géométrique, en particulier grâce au spath d'Islande, que les lois de réflexion et de réfraction de Snell-Descartes sont conservées si l'on suppose une propagation de la lumière sous la forme d'ondes. En outre, la double réfraction du spath d'Islande peut être expliquée, ce qui n'est pas le cas avec une théorie corpusculaire. La théorie ondulatoire, présentée en 1678 sera publiée en 1690 dans son "Traité de la Lumière".

Diffraction à travers un voilage. Source : http://data.abuledu.org/URI/50a8d78e-diffraction-a-travers-un-voilage

Diffraction à travers un voilage

Lorsqu'une source de lumière quasiment ponctuelle est observée à travers un rideau ou un voilage, on peut voir une figure de diffraction telle celle-ci : zoom vers lumière extérieure allumée de jour (lobes secondaires presque indiscernables). Elle résulte de la diffraction de la lumière par le rideau, dont le tissu constitue tout un ensemble d'ouvertures carrées. La mesure de l'angle entre la tache centrale et sa voisine permet d'obtenir le pas du rideau. Les irisations des taches proviennent du fait que chaque longueur d'onde construit sa propre figure de diffraction, légèrement différente de celle d'une longueur d'onde voisine. Les endroits où les figures coïncident sont blancs (en particulier la tache centrale), les autres sont colorés. On constate que la répartition des couleurs est logique car les maxima du sinus cardinal sont obtenus régulièrement (tous les Pi/2 et x, distance d'un point au centre de la tâche, est proportionnel à lambda.

Diffraction par ouverture rectangulaire. Source : http://data.abuledu.org/URI/50a8d458-diffraction-par-ouverture-rectangulaire

Diffraction par ouverture rectangulaire

Figure de diffraction : notations utilisées pour une ouverture rectangulaire. Une ouverture rectangulaire de côtés a et b correspond à une transmission t(X, Y) définie par : t(X,Y) = 1 si |X|<a/2 et |Y|<b/2 ; t(X,Y) = 0 sinon.

Disque chromatique. Source : http://data.abuledu.org/URI/50a900ed-disque-chromatique

Disque chromatique

Disque chromatique avec les longueurs d'ondes associées.

Domaines du spectre électromagnétique. Source : http://data.abuledu.org/URI/50a8f925-domaines-du-spectre-electromagnetique

Domaines du spectre électromagnétique

Régions approximatives en fréquence et en longueur d'onde du spectre électromagnétique. Le spectre électromagnétique est la décomposition du rayonnement électromagnétique selon ses différentes composantes en termes de fréquence (ou période), d'énergie des photons ou encore de longueur d’onde associée, les quatre grandeurs u (fréquence), T (période), E (énergie) et lambda (longueur d’onde) étant liées deux à deux par : la constante de Planck h, (approx. 6,626069×10-34 J⋅s ≈ 4,13567 feV/Hz) et la vitesse de la lumière c, (exactement 299 792 458 m/s).

Effet Doppler. Source : http://data.abuledu.org/URI/50a77081-effet-doppler

Effet Doppler

Schéma de l'éffet Doppler mesurant le décalage de fréquence d’une onde acoustique ou électromagnétique entre la mesure à l'émission (1) et la mesure à la réception (2) lorsque la distance entre l'émetteur (A) et le récepteur (B) varie au cours du temps.

Effet Doppler-Fizeau. Source : http://data.abuledu.org/URI/50a76f10-effet-doppler-fizeau

Effet Doppler-Fizeau

Schéma représentant les ondes émises par une source se déplaçant de la droite vers la gauche. La fréquence est plus élevée à gauche (à l'avant de la source) qu'à droite. L'effet Doppler ou effet Doppler-Fizeau est le décalage de fréquence d’une onde acoustique ou électromagnétique entre la mesure à l'émission et la mesure à la réception lorsque la distance entre l'émetteur et le récepteur varie au cours du temps. Si on désigne de façon générale ce phénomène physique sous le nom d'effet Doppler, on réserve le terme d'« effet Doppler-Fizeau » aux ondes lumineuses.

Entre Terre et Soleil. Source : http://data.abuledu.org/URI/50aa951b-entre-terre-et-soleil

Entre Terre et Soleil

Illustration légendée en anglais, à l'échelle, de la distance séparant la Terre et le Soleil (Sun = Soleil ; Earth = Terre ; Moon = Lune) soit 150 000 000 km. La lumière solaire met environ 8 minutes et 19 secondes à atteindre la Terre.

Expérience des Fentes de Young. Source : http://data.abuledu.org/URI/50a59b21-experience-des-fentes-de-young

Expérience des Fentes de Young

Expérience de Thomas Young (1773-1829) en optique, dans laquelle il mit en évidence et interpréta le phénomène d’interférences lumineuses. L'apport de Young au domaine de l'optique est sans doute son plus grand motif de célébrité, en particulier sa célèbre expérience de la double fente. En 1801, il fait passer un faisceau de lumière à travers deux fentes parallèles, et le projette sur un écran. La lumière est diffractée au passage des fentes et produit sur l'écran des franges d'interférence, c'est-à-dire une alternance de bandes éclairées et non-éclairées. Young en déduit la nature ondulatoire de la lumière.

Faisceau électronique. Source : http://data.abuledu.org/URI/50a8ec9c-faisceau-electronique

Faisceau électronique

Schéma des rayons dans le faisceau électronique du MET : rayon incident, échantillon, lentilles, figure de diffraction, image.

Fentes de Young. Source : http://data.abuledu.org/URI/50a7bb9b-fentes-de-young

Fentes de Young

Schéma de l'expérience de double interférence des fentes de Young.

Front d'onde. Source : http://data.abuledu.org/URI/50a59de2-front-d-onde

Front d'onde

Les fronts d'onde d'une onde plane sont des plans. Le front d'onde est une surface d'égale phase d'une onde, c'est-à-dire que ces points ont mis le même temps de parcours depuis la source. Le front d'onde évolue dans l'espace à la vitesse de propagation de l'onde dans une direction normale à la surface. On peut distinguer deux principaux types de fronts d'onde : les plans et les sphères. Les premiers sont caractéristiques d'une onde plane, et les seconds d'une onde sphérique.

L'appareil de Fizeau-Mascart. Source : http://data.abuledu.org/URI/50a79595-l-appareil-de-fizeau-mascart

L'appareil de Fizeau-Mascart

Dessin de l'appareil ayant servi à l'expérience de Fizeau-Mascart en 1851. Fizeau avait réalisé son expérience en 1849, entre Montmartre et le mont Valérien à Suresnes, ces deux points étant distants d'exactement 8 633 m. La lumière de la lampe passe dans la première lunette et se réfléchit sur un miroir semi-transparent incliné à 45°. Elle passe alors à travers la roue dentée, par une des échancrures, puis part dans l'axe de la seconde lunette située à 8 633 m de là, sur la butte Montmartre. Cette 2e lunette est munie d’un miroir lui permettant de renvoyer la lumière de là où elle vient, à Suresnes. La lumière est alors récupérée par la première lunette, passe à nouveau à travers la roue dentée, par une des échancrures, traverse le miroir semi-transparent, puis est observée par Fizeau au moyen d'une lunette. En 1850, Fizeau et Foucault reprennent l'expérience dans l'eau. L'année suivante, Foucault mesure la célérité c' de la lumière dans de l'eau en translation à la vitesse u et trouve c' = frac{c}{n} + u (1 - frac{1}{n^{2}}) où n est l'indice de réfraction de l'eau. La relativité restreinte donnera en 1905 une explication complète de ce résultat.

L'effet Doppler (rouge et bleu). Source : http://data.abuledu.org/URI/50a78be5-l-effet-doppler-rouge-et-bleu-

L'effet Doppler (rouge et bleu)

Décalage de la propagation du bleu et du rouge, par effet Doppler.

Le phénomène de diffraction de Young. Source : http://data.abuledu.org/URI/50a7b737-le-phenomene-de-diffraction-de-young

Le phénomène de diffraction de Young

Dessin de Thomas Young (1773è1829), savant anglais, montrant le phénomène de diffraction de la lumière. A et B sont les deux sources de lumière, les interférences des ondes sont matérialisées en C, D, E, et F. Young presenta les résultats de cette expérience à la "Royal Society" de Londres en 1803.

Le spectre électromagnétique. Source : http://data.abuledu.org/URI/50a81854-le-spectre-electromagnetique

Le spectre électromagnétique

Proposition d'illustration du spectre électromagnétique, le spectre visible correspond aux couleurs en bas du schéma. La lumière visible, appelée aussi spectre visible ou spectre optique est la partie du spectre électromagnétique qui est visible pour l'œil humain. Il n'y a aucune limite exacte au spectre visible : l'œil adapté à la lumière possède généralement une sensibilité maximale à la lumière de longueur d'onde d'environ 550 nm, ce qui correspond à une couleur jaune-verte. Généralement, on considère que la réponse de l'œil couvre les longueurs d'ondes de 380 nm à 780 nm bien qu'une gamme de 400 nm à 700 nm soit plus commune. Les fréquences correspondantes vont de 350 à 750 THz (10¹² Hz). Cette gamme de longueur d'onde est importante pour le monde vivant car des longueurs d'ondes plus courtes que 380 nm endommageraient la structure des molécules organiques tandis que celles plus longues que 720 nm seraient absorbées par l'eau, constituant abondant du vivant. Ces extrêmes correspondent respectivement aux couleurs violet et rouge. Cependant, l'œil peut avoir une certaine réponse visuelle dans des gammes de longueurs d'onde encore plus larges. Les longueurs d'onde dans la gamme visible pour l'œil occupent la majeure partie de la fenêtre optique, une gamme des longueurs d'onde qui sont facilement transmises par l'atmosphère de la Terre.

Le spectroscope de Fraunhofer. Source : http://data.abuledu.org/URI/50a7678f-le-spectroscope-de-fraunhofer-

Le spectroscope de Fraunhofer

Photogravure (à partir d'un tableau de Richard Wimmer) de Joseph von Fraunhofer présentant son spectroscope. Source : "Essays in astronomy" - D. Appleton & company, 1900 (LCCN 00004435).

Lentille de Fresnel équipant les phares. Source : http://data.abuledu.org/URI/50a8efcc-lentille-de-fresnel-equipant-les-phares

Lentille de Fresnel équipant les phares

Lentille à échelons ou lentille de Fresnel. Grande optique de premier ordre de feu fixe à éclats réguliers ; Anonyme : 1870, bronze et cristal ; H. 254 x Diamètre 198 cm ; Poids 1500kg environ ; Exposé à Paris, palais de Chaillot ; Musée national de la Marine. Dans le domaine de l’optique appliquée, Fresnel invente la lentille à échelon (dite Lentille de Fresnel) utilisée pour accroître le pouvoir de l’éclairage des phares. Elle est encore utilisée dans les phares maritimes, mais aussi dans les phares automobiles et les projecteurs de cinéma.

Mesure de la vitesse de la lumière par Foucault. Source : http://data.abuledu.org/URI/50aa9fd1-mesure-de-la-vitesse-de-la-lumiere-par-foucault

Mesure de la vitesse de la lumière par Foucault

Appareillage utilisé par Foucault avec miroir tournant pour mesurer la vitesse de la lumière : en bas à gauche, la lumière est réfléchie par un miroir tournant (à gauche) en direction d'un miroir fixe (en haut) ; à droite, la lumière réfléchie en provenance du miroir stationnaire rebondit sur le miroir tournant qui a avancé d'un angle θ pendant le déplacement de la lumière. Le télescope situé à un angle 2θ de la source récupère le rayon réfléchi par le miroir tournant. Vers 1848, Fizeau et Foucault se lancent dans la mise au point d'expériences visant à mesure la vitesse de la lumière sur Terre, et à comparer la vitesse de la lumière dans l'air et dans l'eau.

Portrait de Buys-Ballot. Source : http://data.abuledu.org/URI/50a76c93-portrait-de-buys-ballot

Portrait de Buys-Ballot

C.H.D. Buys Ballot (1817-1890), savant néermandais surtout connu pour ses recherches en météorologie, en particulier sur l'explication du sens de la circulation autour des dépressions et des anticyclones. Ses recherches ne se limitent pas à la météorologie. En 1845, Buys Ballot engage un groupe de musiciens pour jouer une note bien précise sur le train Utrecht-Amsterdam. Il enregistre ensuite la différence entre cette fréquence et celle perçue le long de la ligne par un observateur pour confirmer les équations de Christian Doppler concernant la propagation des ondes sonores (Effet Doppler-Fizeau).

Portrait de Doppler. Source : http://data.abuledu.org/URI/50a76a34-portrait-de-doppler

Portrait de Doppler

Portrait de Christian Doppler (1803-1853), physicien autrichien. publication la plus célèbre a été présentée le 25 mai 1842 à l'Académie royale des sciences de Bohème et a pour titre "Sur la lumière colorée des étoiles doubles et d'autres étoiles du ciel", utilisant l'effet Doppler. En 1846, Doppler publie une correction de son travail initial où il tient compte des vitesses relatives de la source de lumière et de l'observateur. En 1850, il fonde l'Institut de Physique de l'Université de Vienne dont il est seul professeur et le premier directeur.

Portrait de Fraunhofer. Source : http://data.abuledu.org/URI/50a76698-portrait-de-fraunhofer

Portrait de Fraunhofer

Portrait de Joseph von Fraunhofer, opticien et physicien allemand (1787-1826). Il fut l'inventeur du spectroscope avec lequel il repéra les raies du spectre solaire. il mit au point de nouvelles machines à polir les miroirs et de nouveaux types de verres optiques (le verre flint achromatique), qui apportèrent une amélioration décisive à la qualité des lentilles. Dans son institut d’optique, Fraunhofer ne se contentait pas de polir des lentilles ; il fabriquait entièrement des lunettes astronomiques, avec leur monture. On doit d'ailleurs à Fraunhofer les montures dites « équatoriales ». Aujourd'hui, la plupart des instruments d'amateur sont équipés de ce type de monture.

Réfraction. Source : http://data.abuledu.org/URI/50a59f8c-refraction

Réfraction

Principe de réfraction d'onde selon Huygens-Fresnel (Augustin Jean Fresnel, né le 10 mai 1788 à Broglie et mort le 14 juillet 1827 à Ville-d'Avray, est un physicien français fondateur de l’optique moderne ; il proposa une explication de tous les phénomènes optiques dans le cadre de la théorie ondulatoire de la lumière). Le principe de Huygens-Fresnel est un principe utilisé en optique : il permet entre autres de calculer l'intensité dans les phénomènes de diffraction et d'interférence. Il consiste à considérer chaque point de l'espace indépendamment. Si un point M reçoit une onde d'amplitude E(M, t), alors on peut considérer qu'il réémet une onde sphérique de même fréquence, même amplitude et même phase. Au lieu de considérer que l'onde progresse de manière continue, on décompose sa progression en imaginant qu'elle progresse de proche en proche. Formulé par Fresnel en 1815, ce principe reprend la base du modèle ondulatoire développé par Huygens (1690). Soit une surface ∑ et une source lumineuse S. On découpe ∑ en surfaces élémentaires d∑ centrées autour d'un point P. Chaque point P de ∑ atteint par la lumière émise par la source S se comporte comme une source secondaire fictive émettant une ondelette sphérique.

Salle de théâtre. Source :

Photographie, Dessins et plans, loup, Lièvres, Bateaux, Grenouilles, Antiquités, Gravure, Peinture, Clip art, Balles et ballons, Amphibiens, Fleurs, Géométrie, Couleurs, Accumulateurs, Piles électriques, Plages, Forêts, Sable, Parasols, Cuisine (pain), Jardinage, Jardins, Réfrigérateurs, Réfrigération et appareils frigorifiques, Bains, Bovins de boucherie, Crustacés, Cuisine -- Appareils et matériel, Nuages, Produits viticoles, feu, Linux (système d'exploitation des ordinateurs), Compas, Salades, Livres illustrés pour enfants, Ombres, laine, Poisson, Plantes des jardins, Confitures, Outillage, Pêches, Cartes à jouer, Mer, Architecture végétale des jardins, Légumes, Potages, Navires à voiles, Découpage (cuisine), Viande, Viande -- Coupe, Étoiles, Cuisine (porc), Saucisses, Enseignes, Tables (meubles), Ongle, Cuisine (aliments naturels), Thé, Bleu, Mouton (viande), soleil, Cuisine (oeufs), Peur chez les animaux, Caricatures et dessins humoristiques, noir, Mécanique, Navires, Triangle, Oeufs, Baies (fruits), Porc, Émotions, Albums à colorier, Nombres cardinaux, Éléments de cuisine, Ustensiles de cuisine, Dinde (viande), Nouvelle-Zélande -- Civilisation, Boissons non alcoolisées, Peur, Pâtisseries, Familles, Fêtes -- Accessoires, Cuisine (fromage), Gelées (confiserie), Maillots de bain, Alimentation, Ciel, Temps -- Systèmes et normes, Oeufs -- Coquilles, Poissons d'eau douce, Parents et enfants, Cuisine (poisson), Véhicules prioritaires, Poulet (viande), Râteaux, Animaux des forêts, Cheminées, Couple -- Psychologie, Espace-temps, Cuisine (sucre), Bains de soleil, Terre, Veaux, Vents, Pyramides, Couple, Graines, Filage à la main, Poissons de mer, Rouge, Aluminium, Vert, Sacs, Membres, Cercle, Navires -- Équipement, Physique, Lumière, Lumière -- Propagation, Joie, Géologie -- Cartes, Poisson rouge, Saumon rouge, Agriculture -- Outillage, Coeur, Art médiéval, Trèfles, Pyramides -- Égypte, Cristaux, Blé, Batteries, Marbre, Fillettes, Caricature, Calcaire, Plantes méditerranéennes, Géométrie euclidienne, Navigation à voile, Cuisine (légumes verts), Sacs en tissu, Pelles, Thalès, Théorème de, Seizième siècle, Dix-neuvième siècle, Dix-septième siècle, Cuivre, Grumes, Albums, Pères, Pères et filles, Sentiers, Maisons individuelles, Pattes, Refus d'obéissance, Jardins médiévaux, Lièvre d'Europe, Méditerranée (région), Cuisine (thym), Aliments crus, Parapente, Vol libre, Dix-huitième siècle, France (Révolution) (1789-1799), Albrecht Dürer (1471-1528), Vinaigre, Poisson fumé, Poisson salé, Auckland (Nouvelle-Zélande), Nouvelle-Zélande (1945-....), Aliments, Cuisine (fruits), Aliments d'origine animale, Aliments fermentés, Cuisine (légumes), Produits de l'oeuf, Boissons alcoolisées, Hérodote (0484?-0420? av. J.-C.), Circulation, Vents -- Vitesse, Métamorphisme (géologie), Savants français, Cuisine (aliments crus), Cuisine (fruits de mer), Cuisine (aliments surgelés), Volaille (viande), Cuisine (poulet), Cuisine (volaille), Produits du blé, Sirops, Sauce à salade, Cuisine (viande), Cuisine (plantes odoriférantes), Crèmes (desserts), Entremets, Poisson surgelé, Agneau (viande), Desserts, Hors-d'oeuvre, Cuisine (baies), Cuisine (vinaigre), Ondes, Cuisine (céréales), Jeux de plage, Conduits d'évacuation de fumées, Fumées, Pull-over, Bronzage, Astérides, Seaux, Serviettes, Chlorure de sodium, Cycle hercynien, Boeuf (viande), Rôtis, Rotissoires, Plats complets, Astacidés, Cuisine (écrevisses), Décapodes (crustacés), Écrevisses, Vinaigrette, Champignons cultivés, Cuisine (champignons), Cuisine (truffes), Truffe du Périgord, Tubéracées, Cassis, Cassissier, Cuisine (cassis), Aliments -- Composition, Blanquette, Cuisine (veau), Veau (viande), Veaux -- Alimentation, Omble de fontaine, Poissonneries, Saumons, Saumons -- Pêche commerciale, Cuisine (semoule), Semoule, Cônes de pin, Pignons (graines), Aliments enrichis, Cuisine (restes), Tourtes, Deux, Jeux de société, Trois, Soupes, Infusions, Lumière, Théorie ondulatoire de la, Cuisson sur réchaud de table, Fondues, Savants allemands, Jumeaux, Interférence (optique), Rhubarbe, Augustin Fresnel (1788 - 1827), Diffraction, Ondes -- Diffraction, Énergie, Photons, Temps, Mesure du, France (Chute des Girondins) ( 30 mai-2 juin 1793), Exécutions capitales et exécuteurs, France (1793), Espace de Minkowski, Relativité (physique), Cônes de lumière, Relativité générale (physique), Architecture égyptienne, Constructions en pierres sèches, Cuisine (rhubarbe), Rhubarbes, Cuisine (boeuf), Cuisines, Aliments -- Consommation, Césium, Horloges à césium, Horloges atomiques, Berne (Suisse), Échelles de temps atomique, Temps (droit international), Johannes Kepler (1571-1630), Des révolutions des orbes célestes - Nicolas Copernic (1473-1543), Héliocentrisme, Énergie éolienne en mer, Portance, Aérodynamique, Relativité restreinte (physique), Muons, Rayons cosmiques, Aquarelle, Le lièvre - Albrecht Dürer (1471-1528), Peintres allemands, Cuisine (plantes aromatiques), Résistance à la chaleur, Thymus (plantes), Abats, Cuisine (abats), Tripes, Aliments -- Réfrigération, Entreposage frigorifique, Frigidaire, Frigo, Danse maorie, Ethnologie -- Nouvelle-Zélande, Linux (logiciels), Rugby, Bayonne (Pyrénées-Atlantiques), Ferias, Aliment, Chevreau (viande), Tacuini sanitatis - al-Muẖtār ibn al-Ḥasan ibn ʿAbdūn ibn Saʿdūn Ibn Buṭlān (10..-1066?), Tangram, Corrosion, Corrosion électrochimique, Assemblages à rivets, Corrosion galvanique, Réactions chimiques -- Mécanismes, Électricité, Symétrie, Constructions géométriques, Génie mécanique, Ressorts et suspension, Ressorts, Volutes, Algues marines, Algues -- Aspect économique, Navires -- Australie, Navires -- Déchets -- Élimination, Navires océanographiques, Navires -- Règlements de sécurité, Sargasses, Mer des, Auteurs arabes, Yuwānīs Ibn Buṭlān (10..-1066?), Jardins -- Aspect symbolique, Famille -- Anthropologie, Famille -- Loisirs, Famille -- Santé et hygiène, Mouton (laine), Quenouilles, Regroupement familial, Veillées, Scènes de la vie quotidienne, Vie quotidienne, Révolution industrielle, Projection cinématographique, Signes et symboles, Carreau, Cartes à jouer, Jeux avec, Pique, Trèfle, Chaleur -- Convection, Dissipateurs thermiques (électronique), Électronique, Acides aminés, Protéines

Salle de théâtre

Photo d'une salle de théâtre : The Journal Tyne Theatre

Thomas Young, pionnier de l'optique ondulatoire. Source : http://data.abuledu.org/URI/50a599b3-thomas-young-pionnier-de-l-optique-ondulatoire

Thomas Young, pionnier de l'optique ondulatoire

Thomas Young (13 juin 1773-10 mai 1829), est un physicien, médecin et égyptologue britannique. Son excellence dans de nombreux domaines non reliés fait qu'il est considéré comme un polymathe, au même titre par exemple que Léonard de Vinci, Gottfried Leibniz ou Francis Bacon. Son savoir était si vaste qu'il fut connu sous le nom de phénomène Young. Il exerça la médecine toute sa vie, mais il est surtout connu pour sa définition du "module de Young" en science des matériaux et pour son expérience des "fentes de Young" en optique, dans laquelle il mit en évidence et interpréta le phénomène d’interférences lumineuses.

Diffraction de Fresnel (courbe). Source : http://data.abuledu.org/URI/50a8d2e4-diffr-fresnel-courbe-petit-png

Diffraction de Fresnel (courbe)

Courbe donnant l'intensité de la lumière diffractée par un bord d'écran observée à une distance r=1 mètre. La longueur d'onde est λ=0,5 micromètres. On observe que la largeur de la première oscillation est de l'ordre de √(λr), les autres oscillations sont plus rapides et moins marquées. L'intensité que l'on aurait en l'absence de diffraction est représentée en rouge. L'intégrale appelée transformation de Fresnel permet de déterminer la figure de diffraction observée à distance finie de l'ouverture diffractante. Ce genre de diffraction peut par exemple s'observer sur les bords de l'ombre géométrique d'un écran comme sur ce schéma.

Expérience de Fizeau-Mascart. Source : http://data.abuledu.org/URI/50a7922f-fizeau-mascart1-png

Expérience de Fizeau-Mascart

Schéma expérimental de Fizeau-Mascart (1851) : de l'eau circule en sens inverse dans les tuyaux parcourus par les rayons en interférence. La différence de vitesse de la lumière dans les deux sens de parcours de l’eau est mise en évidence par un déplacement des franges.

Interférences. Source : http://data.abuledu.org/URI/50a7b098-interferences

Interférences

Simulation d'interférences d'ondes circulaires émises par deux sources voisines. La position des deux sources est marquée par une croix.

Portrait de Fresnel. Source : http://data.abuledu.org/URI/524ee473-portrait-de-fresnel

Portrait de Fresnel

Le tour de la France par deux enfants, par George Bruno, pseudonyme d'Augustine Fouillée (née Tuillerie), 1877, p.250 : manuel scolaire, édition de 1904. FRESNEL, né à Broglie (Eure) en 1788, mort en 1827 ; physicien français. Fondateur de l’optique moderne, il proposa une explication de tous les phénomènes optiques dans le cadre de la théorie ondulatoire de la lumière.