Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Photographie | Lumière du jour | Dessins et plans | Rayonnement solaire | Lumière | Heures | Clip art | Lever de soleil | Géographie | Lumière -- Diffusion | Diffusion atmosphérique | Couleurs | Céramique à décor imprimé | Art anglais | Faïence de Wedgwood | Lithophanie | Régions polaires -- Climat | Printemps | Homère | Horae | ...
Diffusion de Raleigh et de Mie. Source : http://data.abuledu.org/URI/50dd7afc-diffusion-de-raleigh-et-de-mie

Diffusion de Raleigh et de Mie

Illustration de la diffusion de Raleigh et de Mie sur une particule sphérique. De gauche à droite : intensité de la diffusion Rayleigh, de la diffusion Mie pour de petites particules et de la diffusion Mie pour de grosses particules, en fonction de la direction. L'onde incidente arrive par la gauche. La diffusion par des très petites particules, telles que des molécules, de dimensions inférieures au dixième de la longueur d'onde considérée, est un cas limite appelé diffusion Rayleigh. Pour les particules plus grosses que cette longueur d'onde, on doit prendre en compte la diffusion de Mie dans son intégralité : elle explique dans quelles directions la diffusion est la plus intense, on obtient ainsi un « patron de réémission » qui ressemble à celui des lobes d'émission d'une antenne, avec, dans le cas de grosses particules, un lobe plus intense dans la direction opposée à celle d'où provient l'onde incidente. La diffusion de Mie n'est pas fortement dépendante de la longueur d'onde utilisée comme c'est le cas dans celle de Rayleigh. Elle produit donc une lumière presque blanche lorsque le Soleil illumine de grosses particules dans l'air : c'est cette dispersion qui donne la couleur blanc laiteux à la brume et au brouillard. La couleur du ciel, pendant toute la durée du jour, est provoquée par diffusions Rayleigh et Mie de la lumière solaire dans l'atmosphère. La diffusion Rayleigh provoque les teintes bleues, violettes et vertes du ciel. Les couleurs caractéristiques du lever de soleil sont causées par diffusion de Mie de sa lumière par les particules de poussière, suie, fumée et cendre en suspension dans l'atmosphère : lorsque le Soleil est près de l'horizon, sa lumière traverse une plus grande épaisseur d'atmosphère, elle est donc plus susceptible d'être diffusée.

Lumière du jour le 2 avril 2005. Source : http://data.abuledu.org/URI/50dd95ed-lumiere-du-jour-le-2-avril-2005

Lumière du jour le 2 avril 2005

Capture d'écran du logiciel libre de KDE "kworldclock" (GPL) : lumière du jour sur terre le 2 avril 2005, aux environs de 13h (UTC = Temps Universel Coordonné). La lumière du jour correspond à toutes les formes de lumières provenant du soleil, directe et indirecte (éclairage direct, rayonnement diffus du ciel). La lumière du jour est présente dès que le soleil s’élève au dessus de l'horizon. (Cela est vrai pour plus de 50% de la Terre). Toutefois, l'éclairage extérieur peut varier de 120.000 lux à la lumière directe du soleil à moins de 1 lux lors de cas exceptionnels tels que les éclipses solaire ou encore la présence de poussières ou de cendres volcaniques dans l'atmosphère.

Matin. Source : http://data.abuledu.org/URI/5026d1b4-matin
Nuit-jour-soleil. Source : http://data.abuledu.org/URI/5026e48b-nuit-jour-soleil
Schéma de la récupération de la lumière. Source : http://data.abuledu.org/URI/58d1cf8b-schema-de-la-recuperation-de-la-lumiere

Schéma de la récupération de la lumière

Schéma du principe technologique développé par ECHY pour la récupération de la lumière extérieure : Mayanne.

Anneau solaire. Source : http://data.abuledu.org/URI/524c3188-anneau-solaire

Anneau solaire

Anneau solaire utilisé au XVIIème siècle. Source : Joseph Drecker (1856 - 1931) : Theorie der Sonnenuhren, Vereinigung Wissenschaftlicher Verleger, 1925, Abb. 118. L'anneau de paysan mesure la hauteur du soleil par un point de lumière percé sur une bague coulissante. Cette bague doit être réglée à la date du jour, ce qui modifie la position du point du lumière, et donc la trajectoire du rayon. Ce système permet d'obtenir, dans la majeure partie de l'Europe (entre les latitudes Nord 35° à 55° environ) l'heure solaire avec une précision de l'ordre de 15 à 20 minutes. Au-delà de ces latitudes, la précision se dégrade.

Crépuscule. Source : http://data.abuledu.org/URI/50dd6d1c-crepuscule

Crépuscule

Golfe du Morbihan au crépuscule. Si on appelle nuit l'intervalle durant laquelle l'obscurité est totale, il s'agit de la période où l'intensité de la lumière solaire diffusée par les hautes couches de l'atmosphère est inférieure à la luminosité intrinsèque des étoiles. Cet intervalle est séparé du coucher du Soleil le soir par le crépuscule.

Diffraction à travers un voilage. Source : http://data.abuledu.org/URI/50a8d78e-diffraction-a-travers-un-voilage

Diffraction à travers un voilage

Lorsqu'une source de lumière quasiment ponctuelle est observée à travers un rideau ou un voilage, on peut voir une figure de diffraction telle celle-ci : zoom vers lumière extérieure allumée de jour (lobes secondaires presque indiscernables). Elle résulte de la diffraction de la lumière par le rideau, dont le tissu constitue tout un ensemble d'ouvertures carrées. La mesure de l'angle entre la tache centrale et sa voisine permet d'obtenir le pas du rideau. Les irisations des taches proviennent du fait que chaque longueur d'onde construit sa propre figure de diffraction, légèrement différente de celle d'une longueur d'onde voisine. Les endroits où les figures coïncident sont blancs (en particulier la tache centrale), les autres sont colorés. On constate que la répartition des couleurs est logique car les maxima du sinus cardinal sont obtenus régulièrement (tous les Pi/2 et x, distance d'un point au centre de la tâche, est proportionnel à lambda.

La légende de la chauve-souris de Saint-Tréguier. Source : http://data.abuledu.org/URI/52d709cd-la-legende-de-la-chauve-souris-de-saint-treguier

La légende de la chauve-souris de Saint-Tréguier

Tréguier : le cloître jouxtant la cathédrale Saint-Tugdual. "Au temps jadis, une souris vint à demander l'hospitalité à une hirondelle qui avait bâti son nid dans une vieille cheminée et couvait ses œufs ; celle-ci, que son mari avait abandonnée, y consentit, mais à la condition que, durant trois jours, la souris couverait à sa place. La souris accomplit sa tâche, puis elle partit. Voilà les petits éclos, mais ils étaient couverts de poils au lieu des plumes, et ils avaient une tête et un corps de souris, avec des oreilles et des ailes crochues comme le diable. L'hirondelle en mourut de chagrin ; après ses funérailles, la reine des hirondelles fit enfermer les orphelins dans le cloître de la cathédrale de Tréguier et leur défendit, sous peine de mort, de ne jamais sortir à la lumière du soleil. Voilà pourquoi on ne voit jamais de chauve-souris pendant le jour". (Légende recueillie par G. Le Calvez, instituteur à Caulnes à la fin du XIXe siècle, citée par Le Télégramme no 20288, 22 septembre 2010). Source : http://fr.wikipedia.org/wiki/Chiroptera.

La mer polaire. Source : http://data.abuledu.org/URI/524deb71-la-mer-polaire

La mer polaire

Le tour de la France par deux enfants, par George Bruno, pseudonyme d'Augustine Fouillée (née Tuillerie), 1877, p.232 ; manuel scolaire, édition de 1904 : LA MER POLAIRE. - Du côté des pôles, la mer est glacée presque toute l'année et souvent à une très grande profondeur. Parfois les glaces se détachent et voyagent sur l'eau, c'est ce qu'on appelle des banquises. Ces banquises offrent l'aspect le plus merveilleux : elles sont dentelées comme des cathédrales et étincellent à la lumière du jour ou à celle de la lune. Quand ces énormes masses viennent à rencontrer un vaisseau, elles se brisent comme une coque de noix.

Lithophanie de Wedgwood. Source : http://data.abuledu.org/URI/5230bee5-lithophanie-de-wedgwood

Lithophanie de Wedgwood

Lithophanie de Wedgwood représentant la danse des trois Heures, filles de Zeus (allégories des saisons). Étymologie : du grec lithos, « pierre » et phanes et phaneia, de phainein « paraître », plaque de biscuit de porcelaine non émaillée et non vitrifiée ou d'albâtre, incisée et gravée de sorte à ce qu’elle permette de faire apparaître une image par translucidité devant une source de lumière, plus l’épaisseur de la plaque étant fine, plus la translucidité étant marquée. Par le mot Heures (en latin Horae et en grec ancien Ὧραι / Hōrai), les Grecs, primitivement, désignèrent, non pas les divisions du jour, mais celles de l'année. Les Heures étaient filles de Zeus et de Thémis. Hésiode en compte trois : Eunomie, Dicé et Eiréné, c'est-à-dire le Bon Ordre ou la Législation, la Justice et la Paix, noms indiquant leur rôle moral. Homère les nomme les portières du ciel, et leur confie le soin d'ouvrir et de fermer les portes éternelles de l'Olympe. Elles sont aussi les régulatrices de la vie humaine. La mythologie grecque ne reconnut donc d'abord que trois Heures ou trois Saisons : le Printemps, l’Été et l'Hiver.

Marteniza en laine. Source : http://data.abuledu.org/URI/551826b8-marteniza-en-laine

Marteniza en laine

Marteniza rouge et blanc en laine. Dans les premiers jours de mars, les Bulgares/Macédoniens et les Roumains/Moldaves s’offrent les uns les autres des martenitsi/mărțișoare (le plus souvent, ce sont les hommes qui en offrent aux femmes) formées d’un fil rouge et d’un fil blanc parfois tressés ensemble. Les deux couleurs peuvent avoir plusieurs symboliques : la santé et la force du sang, le blanc d'une longue vie ; la chaleur du soleil printanier et la neige hivernale qui fond ; la lumière et l’eau, deux éléments essentiels à la vie ; l'amour (ou l'amitié) et la pureté (ou la droiture, ou le respect) ; la vie et la paix… Source : http://fr.wikipedia.org/wiki/F%C3%AAte_du_1er_mars_en_Europe_du_Sud-Est

Phare de Ouistreham, gardien de l'estuaire de l'Orne . Source : http://data.abuledu.org/URI/535e6233-phare-de-ouistreham-

Phare de Ouistreham, gardien de l'estuaire de l'Orne

Le phare de Ouistreham) est un phare à terre, cylindrique, mesurant 38 m de haut, fabriqué en granite et peint en rouge et blanc. Il fut mis en service en 1905. Il a été construit à côté de l'usine hydraulique, fonctionnant à l'époque et toujours visible de nos jours. Le phare d'Ouistreham est le "gardien de l'estuaire de l'Orne", il est visible à 16 milles marins à la ronde. La "signature" lumineuse du phare est de trois secondes de lumière blanche suivi d'une seconde d'obscurité. Le phare indique les dangereux rochers des Essarts grâce à un secteur rouge montrant la direction aux marins. Grâce à ses 171 marches de granite bleu de Vire, on accède à l'optique, une lampe halogène derrière une demi-lentille de Fresnel. Il est automatisé, gardienné et visitable. Au cours de l'été 2005, à l'occasion du centenaire, un jeu de lumière a été installé sur le phare. Il éclaire la base de l'édifice, et permet aux Ouistrehamais, en fonction de la couleur, de savoir si la mer est montante ou descendante : il est bleu lors de la marée montante, blanc le reste du temps. Il est peint en rouge en son haut, en écho aux balises latérales bâbord de la zone A. En effet, il est implanté sur la gauche du chenal quand on entre au port. Hauteur : 38.20 m - Elévation : 43 m - Portée : 16 milles nautiques ; Feux : lancs 1 occ., 4 secondes secteurs blanc et rouge ; Optique : demi-lentille de Fresnel, focale 0.25 m. ; Lanterne : lampe halogène 1 500 w. Source : http://fr.wikipedia.org/wiki/Phare_de_Ouistreham

Rayons du crépuscule. Source : http://data.abuledu.org/URI/50be3dfe-rayons-du-crepuscule

Rayons du crépuscule

Rayons du crépuscule : les différentes couleurs sont dues à la dispersion de la lumière produite par l'atmosphère. Quand la lumière traverse l'atmosphère, les photons interagissent avec elle à travers la diffusion des ondes. Si la lumière n'interagit pas avec l'atmosphère, c'est la radiation directe et cela correspond au fait de regarder directement le soleil. Les radiations indirectes concernent la lumière qui est diffusée dans l'atmosphère. Par exemple, lors d'un jour couvert quand les ombres ne sont pas visibles il n'y a pas de radiations directes pour la projeter, la lumière a été diffusée. Un autre exemple, dû à un phénomène appelé la diffusion Rayleigh, les longueurs d'onde les plus courtes (bleu) se diffusent plus aisément que les longueurs d'onde les plus longues (rouge). C'est pourquoi le ciel parait bleu car la lumière bleue est diffusée. C'est aussi la raison pour laquelle les couchers de soleil sont rouges. Parce que le soleil est proche de l'horizon, les rayons solaires traversent plus d'atmosphère que la normale avant d'atteindre l'œil par conséquent toute la lumière bleue a été diffusée, ne laissant que le rouge lors du soleil couchant.