Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Photographie | Gaz de combustion | Gravure | Hauts fourneaux | Noir de carbone | Dessins et plans | Industrie | Moteurs -- Combustion | Combustion | Moteurs -- Compresseurs | Moteurs -- Pièces | Résines | Exploitation des ressources forestières | Avions -- Turboréacteurs -- Entrée d'air | Flammes | Uckange (Moselle) | Avions -- Moteurs | Architecture industrielle | Fumées | Bleu (couleur) | ...
Fumée d'éruption volcanique.. Source : http://data.abuledu.org/URI/501dc993-fumee-d-eruption-volcanique-

Fumée d'éruption volcanique.

Fumée de l'éruption du volcan Kanaga situé en Alaska, dans les îles Aléoutiennes, sur l'île Kanaga. Photo prise le 27 janvier 1994.

Fumée d'incendie. Source : http://data.abuledu.org/URI/501dc834-fumee-d-incendie

Fumée d'incendie

Fumée de l'incendie de Malibu, Los Angeles en octobre 2007.

Fumée de la Centrale thermique du Havre. Source : http://data.abuledu.org/URI/501dc743-fumee-de-la-centrale-thermique-du-havre

Fumée de la Centrale thermique du Havre

Fumées émanant des chemines de la centrale thermique du Havre (France).

Signal de fumée. Source : http://data.abuledu.org/URI/501dca88-signal-de-fumee

Signal de fumée

Tableau de Frédéric Remington (1861-1909) montrant un groupe d'indiens envoyant un message de fumée (1896).

Arbre à vilebrequin. Source : http://data.abuledu.org/URI/52487de7-arbre-a-vilebrequin-

Arbre à vilebrequin

Un ensemble bielle-piston-vilebrequin assure la rotation du moteur. Le piston est l'élément mobile assurant la variation de volume de la chambre de combustion d'un cylindre. Généralement lié à une bielle, il assure la compression des gaz de combustion et subit leur détente, engendrant ainsi un mouvement rotatif du vilebrequin. Lorsque la chambre est ouverte par une soupape, il expulse les gaz brûlés ou aspire le mélange du cycle suivant.

Densité d'énergie de quelques carburants. Source : http://data.abuledu.org/URI/50cb287b-densite-d-energie-de-quelques-carburants

Densité d'énergie de quelques carburants

Densité d'énergie volumique et massique brute de quelques carburants (à l'exclusion des comburants). En physique, la densité d'énergie représente l'énergie par unité de volume en un point, concernant une forme d'énergie non localisée. Le concept de densité d'énergie est abondamment utilisé en relativité générale et en cosmologie car il intervient explicitement dans les équations déterminant le champ gravitationnel (les équations d'Einstein), mais il est également présent en mécanique des milieux continus et en électromagnétisme. Dans les applications de stockage d'énergie, la densité énergétique fait référence soit à la densité d'énergie massique, soit à la densité d'énergie volumique. Plus la densité d'énergie est élevée, plus il y a d'énergie pouvant être stockée ou transportée pour un volume ou une masse donné. Ceci est particulièrement important dans le domaine des transports (automobile, avion, fusée...). On notera que le choix d'un carburant pour un moyen de transport, outre les aspects économiques, tient compte du rendement du groupe motopropulseur. Les sources d'énergie de plus forte densité sont issues des réactions de fusion et de fission. En raison des contraintes générées par la fission, elle reste cantonnée à des applications bien précises. La fusion en continu, elle, n'est pas encore maîtrisée à ce jour. Le charbon, le gaz et le pétrole sont les sources d'énergie les plus utilisées au niveau mondial, même s'ils ont une densité d'énergie beaucoup plus faible, le reste étant fourni par la combustion de la biomasse qui a une densité d'énergie encore plus faible. Liste des carburants cités : Aluminium, Silicium, Anthracite, Fer, Zinc, Magnésium, Polystyrène, Polyéthylène, Borohydrure de lithium, Polyester, Métabolisme des graisses, Diesel, Essence, Kérosène, Butanol, Butane GPL, Propane GPL, Métabolisme du sucre, Glucose, Éthanol, Lithium, Bitumineux, Hydrazine, Méthanol, Sodium, Ammoniac liquide, Gaz naturel, Hydrogène liquide, Dihydrogène (700 bar), Dihydrogène, Méthane, Batterie lithium-ion.

Explosion météorique en 1995. Source : http://data.abuledu.org/URI/534310ab-explosion-meteorique-en-1995

Explosion météorique en 1995

Image de l'explosion de météore Alpha-Monocerotid en 1995. Une étoile filante est le phénomène lumineux qui accompagne l'entrée dans l'atmosphère d'un corps appelé météoroïde, qui correspond à un petit corps circulant dans l'espace à des vitesses de l'ordre de 70 km/s, son orbite croisant celle de la Terre. Cette traînée lumineuse est causée par la vaporisation du corps et l'ionisation de l'air sur sa trajectoire, ce qui provoque la combustion de ce corps qui laisse derrière lui un sillage de gaz ionisé, le plasma. Ce phénomène est du principalement à la compression de l'atmosphère en avant du corps supersonique et non à la friction. L'étoile filante est une fine poussière cosmique qui est vaporisée entièrement avant d'atteindre le sol tandis que le bolide, météoroïde de masse et taille importantes, produit un disque lumineux intense lors de sa rentrée atmosphérique. Ce bolide peut exploser, généralement à 90 ou 70 kilomètres d'altitude ou atteindre le sol (bolide lui-même ou les fragments issus de son explosion), devenant une ou des météorites. Source : http://fr.wikipedia.org/wiki/%C3%89toile_filante Le phénomène se passe généralement entre 120 et 85 kilomètres d'altitude, bien que certaines étoiles filantes peuvent être visibles à 400 ou 600 km au-dessus du sol.

Fabrication de Noir de fumée. Source : http://data.abuledu.org/URI/513af8ac-fabrication-de-noir-de-fumee

Fabrication de Noir de fumée

Fabrication industrielle du noir de fumée, image scannée dans : "Leçons élémentaires de chimie" (B.Bussard, H.Dubois) 1906 page 39. « Dans l’industrie, on prépare le noir de fumée en brûlant des résines dans un espace restreint. La fumée épaisse qui se dégage passe dans une vaste chambre cylindrique tendue de toile, et dont le toit, de forme conique présente une ouverture pour la sortie des gaz dus à la combustion. Le noir de fumée se dépose sur les toiles et on le fait tomber au moyen d’un cône mobile engagé dans la toiture et dont le bord inférieur s’applique exactement contre la paroi de la chambre. »

Fabrication du noir de fumée en 1906. Source : http://data.abuledu.org/URI/53caa5cb-fabrication-du-noir-de-fumee-en-1906

Fabrication du noir de fumée en 1906

Fabrication du noir de fumée, "Leçons élémentaires de chimie" (B.Bussard, H.Dubois) 1906 page 39 : Dans l’industrie, on prépare le noir de fumée en brûlant des résines dans un espace restreint. La fumée épaisse qui se dégage passe dans une vaste chambre cylindrique tendue de toile, et dont le toit, de forme conique présente une ouverture pour la sortie des gaz dus à la combustion. Le noir de fumée se dépose sur les toiles et on le fait tomber au moyen d’un cône mobile engagé dans la toiture et dont le bord inférieur s’applique exactement contre la paroi de la chambre. (p.38-40)

Flamme de combustion de haut fourneau. Source : http://data.abuledu.org/URI/56c22a0d-flamme-de-combustion-de-haut-fourneau

Flamme de combustion de haut fourneau

Flamme due à la combustion de gaz de haut fourneau à la torchère. Cette flamme bleue clair n'est visible que de nuit.

Haut fourneau d'Uckange. Source : http://data.abuledu.org/URI/56c21c61-haut-fourneau-d-uckange

Haut fourneau d'Uckange

Vue d'ensemble du haut fourneau U4 (Uckange, en Moselle, classé Monument Historique) depuis la passerelle panoramique. Panorama créé avec Hugin à partir de 6 photos en grand angle (Panasonic ZX1) : une conduite de gaz descend successivement vers le cyclone, puis vers l'épuration secondaire (à dr.). La pente de la conduite empêche les dépôts de poussière. Un haut fourneau est une installation industrielle destinée à simultanément désoxyder et fondre les métaux contenus dans un minerai, par la combustion d'un combustible solide riche en carbone. Source : https://fr.wikipedia.org/wiki/Usine_sid%C3%A9rurgique_d'Uckange

Turboréacteur. Source : http://data.abuledu.org/URI/50c83ec3-turboreacteur

Turboréacteur

Schéma de turboréacteur d'avion typique (simple flux, simple corps). L'air est comprimé par les pales en entrant dans le réacteur, puis est mélangé avec le carburant qui brûle dans la chambre de combustion. Les gaz d'échappement donnent une forte poussée en avant et font tourner les turbines qui actionnent les pales de compression. Un turboréacteur fonctionne sur le principe d'action-réaction. La variation de vitesse de l'air entre l'entrée et la sortie du réacteur crée une quantité de mouvement (dénommée poussée) vers l'arrière du moteur qui, par réaction, — d'où le terme de moteur à réaction — engendre le déplacement du moteur, donc du véhicule sur lequel il est fixé, vers l'avant. Le turboréacteur fonctionne sur le principe des turbines à gaz. À l'admission, l'air est aspiré par la soufflante (le cas échéant) puis comprimé via un compresseur (dans tous les cas). Du kérosène est ensuite injecté puis mélangé avec l'air au niveau de la chambre de combustion puis enflammé, ce qui permet de fortement dilater les gaz. Ces derniers s'échappent du turboréacteur par la tuyère qui, en raison de sa section convergente, augmente la vitesse de l'air (suivant l'effet venturi) (l'écoulement étant maintenu subsonique au sein du réacteur). L'air passe au préalable par une turbine permettant d'entraîner le compresseur et les accessoires nécessaires au fonctionnement du réacteur ; le mouvement est auto-entretenu tant qu'il y a injection de carburant. En simplifiant, l'énergie de pression engendrée au sein du réacteur sera transformée en énergie cinétique en sortie, ce qui engendrera une forte poussée. À l'image des moteurs automobile, le turboréacteur réalise ainsi un cycle continu à quatre temps — admission, compression, combustion et détente/échappement — théoriquement décrit par le cycle de Brayton. Ce cycle est constitué d'une compression adiabatique réversible, d'une combustion isobare irréversible (le réacteur étant considéré comme un système ouvert), d'une détente adiabatique réversible et d'un refroidissement isobare réversible.