Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Géométrie | Dessins et plans | Perspective cavalière | Gravure | Photographie | Perspective | Hexagones | Polygones | Agriculture | Produits du rucher | Miel | Abeilles mellifères | Mathématiques récréatives | Ferdinand Möbius (1790-1868) | Sphère | Structures en nids d'abeilles | Géodésie | Métrologie | Coordonnées (mathématiques) | Espace | ...
Cône de Lumière. Source : http://data.abuledu.org/URI/50ad8434-cone-de-lumiere

Cône de Lumière

Le cône de lumière de l'évènement e0. La flèche rose montre la dimension temporelle et les flèches grises, les dimensions spatiales. Un événement étant donné, l'ensemble des événements physiquement joignables dans le futur et de ceux du passé à partir desquels on pouvait joindre l'événement donné, forme un cône dans l'espace de Minkowski, appelé cône de lumière, et permettant des raisonnements purement géométriques par des dessins appelés diagrammes de Minkowski. Cet espace est pseudo-euclidien : bien que la métrique ne soit qu'une pseudo-métrique, les géodésiques y sont les droites, ce qui fait dire que cet espace est plat comme dans un espace euclidien. Les inégalités triangulaires qui y sont valables montrent qu'un segment est le chemin le plus long entre deux points, ce qui est une nette différence avec la géométrie euclidienne.

Francfort. Source : http://data.abuledu.org/URI/50e801e5-francfort

Francfort

Vue de Francfort (Klostergasse, Dominikanerkloster, Staufenmauer, Mönchsturm et Judengasse), 1628, par Matthäus Merian l’Ancien (1593–1650). Les lignes parallèles dans la réalité sont représentées parallèles sur le dessin, ce qui est le propre des perspectives axonométriques, et rend mal l'effet de perspective dès que les dimensions de l'objet représenté sont importantes.

Orthogonalité dans l'espace de Minkowski. Source : http://data.abuledu.org/URI/50ad8268-orthogonalite-dans-l-espace-de-minkowski

Orthogonalité dans l'espace de Minkowski

Orthogonalité dans l'espace de Minkowski pour une vitesse v=0. Dans la représentation qu'est un diagramme de Minkowski, l'orthogonalité minkowskienne possède une propriété que ne possède pas l'orthogonalité euclidienne : l'angle entre un vecteur et son orthogonal varie en fonction de l'inclinaison du vecteur (en géométrie euclidienne, l'angle est fixe et égal à 90°). Quand le vecteur est de « genre lumière », ce vecteur est alors son propre orthogonal : la ligne d'univers est contenue dans le plan de simultanéité. Pour un photon, le temps ne s'écoule pas quand il progresse sur sa ligne d'univers.

Parallélépipède déterminé par trois vecteurs. Source : http://data.abuledu.org/URI/5184c09e-parallelepipede-determine-par-trois-vecteurs

Parallélépipède déterminé par trois vecteurs

Parallélépipède déterminé par trois vecteurs. En géométrie dans l'espace, les parallélépipèdes sont des hexaèdres dont les faces sont parallèles deux à deux.

Perspective cavalière. Source : http://data.abuledu.org/URI/50e7f2d0-perspective-cavaliere

Perspective cavalière

La perspective cavalière est introduite au XVIè siècle par les ingénieurs militaires. Elle permet d'obtenir une image plane la plus fidèle possible d'un objet dans l'espace et d'étudier ses propriétés métriques (angles, orthogonalité, longueur). Elle montre l'agencement des parties d'un objet : c'est pourquoi elle est utilisée pour le dessin industriel et la mécanique.

Perspective cavalière à 90°. Source : http://data.abuledu.org/URI/50e7fb12-perspective-cavaliere-a-90-

Perspective cavalière à 90°

Comparaison entre les projections orthogonales sur les plans contenant les axes (géométrie descriptive) et la perspective cavalière : report des coordonnées. Pour effectuer une représentation en perspective cavalière, il faut choisir différents paramètres : 1) un plan frontal : un segment contenu dans ce plan, ou dans un plan parallèle, est représenté en vraie grandeur ; 2) un angle de fuite : les perpendiculaires au plan frontal, appelées fuyantes sont représentées dans cette direction ; 3) un coefficient de réduction : les longueurs représentées dans la direction de fuite sont multipliées par ce coefficient de réduction. De plus, l'alignement des points, le parallélisme des droites le rapport des longueurs de deux segments parallèles, et donc les milieux, sont conservés. En revanche, les longueurs, les aires, et les angles ne sont pas conservés dans les plans non frontaux. Les éléments cachés par les faces supposées opaques sont représentés en pointillés; les éléments visibles par l'observateur sont représentés en traits pleins.

Perspective cavalière en dessins de fortifications. Source : http://data.abuledu.org/URI/50e82ccc-perspective-cavaliere-en-dessins-de-fortifications

Perspective cavalière en dessins de fortifications

Source : Ephraim Chambers (1680–1740), "Cyclopaedia, or an Universal Dictionary of Arts and Sciences" 1728. La perspective cavalière est une manière de représenter en deux dimensions des objets en volume. Cette représentation ne présente pas de point de fuite : la taille des objets ne diminue pas lorsqu'ils s'éloignent. C'est une forme particulière de perspective axonométrique, où l'on situe les points grâce à leurs coordonnées dans un repère formé de trois axes. Dans cette perspective, deux des axes sont orthogonaux et ont un facteur de report de 1. Le troisième axe est incliné, en général de 30 ou 45° par rapport à l'horizontale, appelé « angle de fuite », et a un facteur de report inférieur à 1, en général. Cette perspective ne prétend pas donner l'illusion de ce qui peut être vu, mais simplement donner une information sur la notion de profondeur. Simple à réaliser, c'est une perspective naïve qui peut traduire un manque de « vision dans l'espace ». Trop souvent utilisée dans les dessins à main levée, elle est malgré tout à déconseiller par son ambiguïté de représentation : un objet éloigné d'un autre peut sembler être plutôt au-dessus ou au-dessous. Cette représentation était utilisée initialement pour la conception des fortifications militaires. Le « cavalier » est un promontoire de terre situé en arrière des fortifications et qui permet de voir par-dessus, et donc de voir les assaillants. La perspective cavalière était donc la vue que l'on avait du haut du cavalier (les anglais utilisent parfois le terme de « high view point », en français « point de vue de haut »). Certains avancent également que c'est la vue qu'a un cavalier du haut de son cheval.

Ruban de Moebius. Source : http://data.abuledu.org/URI/52f2badb-ruban-de-moebius

Ruban de Moebius

Ruban de Moebius construit à partir d'une bande de papier, un ruban adhésif retenant les deux bouts. Il est facile de visualiser la bande de Möbius dans l'espace : un modèle simple se réalise en faisant subir une torsion d'un demi-tour à une longue bande de papier, puis en collant les deux extrémités. En topologie, le ruban de Möbius (aussi appelé bande de Möbius ou boucle de Möbius) est une surface compacte dont le bord est homéomorphe à un cercle. Autrement dit, il ne possède qu'une seule face contrairement à un ruban classique qui en possède deux. Elle a la particularité d'être réglée et non-orientable. Source : http://fr.wikipedia.org/wiki/Ruban_de_M%C3%B6bius.

Sphère dans un espace euclidien. Source : http://data.abuledu.org/URI/51844718-sphere-dans-un-espace-euclidien

Sphère dans un espace euclidien

En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est appelée le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères.

Structure hexagonale des rayons de miel. Source : http://data.abuledu.org/URI/51803fab-structure-hexagonale-des-rayons-de-miel

Structure hexagonale des rayons de miel

Les hexagones réguliers peuvent se juxtaposer les uns les autres sans laisser aucune lacune, comme les carrés et les triangles équilatéraux, et sont ainsi utiles pour construire des pavages. Les cellules des rayons dans une ruche d'abeilles à miel sont hexagonales pour cette raison et parce que cette forme permet une utilisation efficace de l'espace et des matériaux de construction.

Surfaces de repérage sur la Terre. Source : http://data.abuledu.org/URI/50969a7f-cd-surfref-png

Surfaces de repérage sur la Terre

Croquis des différentes surfaces de repérage sur la Terre. Dans l'acception française du terme, la géodésie s'occupe de la détermination de la forme et des dimensions de la Terre dans son ensemble (autrement dit, de la "figure de la Terre"), ainsi que de son champ de pesanteur (pour l'étude duquel on emploie actuellement le terme de géodésie physique). On définit le géoïde comme étant une surface équipotentielle du champ de pesanteur, choisie arbitrairement, mais très proche du niveau des océans que, par la pensée, nous pouvons prolonger sous les continents. On introduit des systèmes de référence pour décrire le mouvement de la Terre dans l'espace (« système céleste »), ainsi que la géométrie de surface et le champ de pesanteur de la Terre (« système terrestre »). Le choix des meilleurs systèmes de référence, compte tenu des progrès spectaculaires de la métrologie actuelle, est devenu l'une des grandes avancées de la géodésie, la géométrie globale de la Terre étant désormais mesurée à mieux que 1 cm.

Système de coordonnées dans l'espace. Source : http://data.abuledu.org/URI/5183091e-systeme-de-coordonnees-dans-l-espace

Système de coordonnées dans l'espace

En géométrie analytique, tout point du plan ou de l'espace est « repéré », c'est-à-dire qu'on lui associe un couple (dans le plan) ou un triplet (dans l'espace) de nombres.