Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Saumons -- Pêche commerciale | Saumons | Poissonneries | Omble de fontaine | Cuisine (semoule) | Semoule | Cuisine (restes) | Aliments enrichis | Pignons (graines) | Cônes de pin | Veaux -- Alimentation | Veau (viande) | Cassis | Tubéracées | Truffe du Périgord | Cuisine (truffes) | Cassissier | Cuisine (cassis) | Cuisine (veau) | Blanquette | ...
Salle de théâtre. Source :

Photographie, Dessins et plans, loup, Lièvres, Bateaux, Grenouilles, Antiquités, Gravure, Peinture, Clip art, Balles et ballons, Amphibiens, Fleurs, Géométrie, Couleurs, Accumulateurs, Piles électriques, Plages, Forêts, Sable, Parasols, Cuisine (pain), Jardinage, Jardins, Réfrigérateurs, Réfrigération et appareils frigorifiques, Bains, Bovins de boucherie, Crustacés, Cuisine -- Appareils et matériel, Nuages, Produits viticoles, feu, Linux (système d'exploitation des ordinateurs), Compas, Salades, Livres illustrés pour enfants, Ombres, laine, Poisson, Plantes des jardins, Confitures, Outillage, Pêches, Cartes à jouer, Mer, Architecture végétale des jardins, Légumes, Potages, Navires à voiles, Découpage (cuisine), Viande, Viande -- Coupe, Étoiles, Cuisine (porc), Saucisses, Enseignes, Tables (meubles), Ongle, Cuisine (aliments naturels), Thé, Bleu, Mouton (viande), soleil, Cuisine (oeufs), Peur chez les animaux, Caricatures et dessins humoristiques, noir, Mécanique, Navires, Triangle, Oeufs, Baies (fruits), Porc, Émotions, Albums à colorier, Nombres cardinaux, Éléments de cuisine, Ustensiles de cuisine, Dinde (viande), Nouvelle-Zélande -- Civilisation, Boissons non alcoolisées, Peur, Pâtisseries, Familles, Fêtes -- Accessoires, Cuisine (fromage), Gelées (confiserie), Maillots de bain, Alimentation, Ciel, Temps -- Systèmes et normes, Oeufs -- Coquilles, Poissons d'eau douce, Parents et enfants, Cuisine (poisson), Véhicules prioritaires, Poulet (viande), Râteaux, Animaux des forêts, Cheminées, Couple -- Psychologie, Espace-temps, Cuisine (sucre), Bains de soleil, Terre, Veaux, Vents, Pyramides, Couple, Graines, Filage à la main, Poissons de mer, Rouge, Aluminium, Vert, Sacs, Membres, Cercle, Navires -- Équipement, Physique, Lumière, Lumière -- Propagation, Joie, Géologie -- Cartes, Poisson rouge, Saumon rouge, Agriculture -- Outillage, Coeur, Art médiéval, Trèfles, Pyramides -- Égypte, Cristaux, Blé, Batteries, Marbre, Fillettes, Caricature, Calcaire, Plantes méditerranéennes, Géométrie euclidienne, Navigation à voile, Cuisine (légumes verts), Sacs en tissu, Pelles, Thalès, Théorème de, Seizième siècle, Dix-neuvième siècle, Dix-septième siècle, Cuivre, Grumes, Albums, Pères, Pères et filles, Sentiers, Maisons individuelles, Pattes, Refus d'obéissance, Jardins médiévaux, Lièvre d'Europe, Méditerranée (région), Cuisine (thym), Aliments crus, Parapente, Vol libre, Dix-huitième siècle, France (Révolution) (1789-1799), Albrecht Dürer (1471-1528), Vinaigre, Poisson fumé, Poisson salé, Auckland (Nouvelle-Zélande), Nouvelle-Zélande (1945-....), Aliments, Cuisine (fruits), Aliments d'origine animale, Aliments fermentés, Cuisine (légumes), Produits de l'oeuf, Boissons alcoolisées, Hérodote (0484?-0420? av. J.-C.), Circulation, Vents -- Vitesse, Métamorphisme (géologie), Savants français, Cuisine (aliments crus), Cuisine (fruits de mer), Cuisine (aliments surgelés), Volaille (viande), Cuisine (poulet), Cuisine (volaille), Produits du blé, Sirops, Sauce à salade, Cuisine (viande), Cuisine (plantes odoriférantes), Crèmes (desserts), Entremets, Poisson surgelé, Agneau (viande), Desserts, Hors-d'oeuvre, Cuisine (baies), Cuisine (vinaigre), Ondes, Cuisine (céréales), Jeux de plage, Conduits d'évacuation de fumées, Fumées, Pull-over, Bronzage, Astérides, Seaux, Serviettes, Chlorure de sodium, Cycle hercynien, Boeuf (viande), Rôtis, Rotissoires, Plats complets, Astacidés, Cuisine (écrevisses), Décapodes (crustacés), Écrevisses, Vinaigrette, Champignons cultivés, Cuisine (champignons), Cuisine (truffes), Truffe du Périgord, Tubéracées, Cassis, Cassissier, Cuisine (cassis), Aliments -- Composition, Blanquette, Cuisine (veau), Veau (viande), Veaux -- Alimentation, Omble de fontaine, Poissonneries, Saumons, Saumons -- Pêche commerciale, Cuisine (semoule), Semoule, Cônes de pin, Pignons (graines), Aliments enrichis, Cuisine (restes), Tourtes, Deux, Jeux de société, Trois, Soupes, Infusions, Lumière, Théorie ondulatoire de la, Cuisson sur réchaud de table, Fondues, Savants allemands, Jumeaux, Interférence (optique), Rhubarbe, Augustin Fresnel (1788 - 1827), Diffraction, Ondes -- Diffraction, Énergie, Photons, Temps, Mesure du, France (Chute des Girondins) ( 30 mai-2 juin 1793), Exécutions capitales et exécuteurs, France (1793), Espace de Minkowski, Relativité (physique), Cônes de lumière, Relativité générale (physique), Architecture égyptienne, Constructions en pierres sèches, Cuisine (rhubarbe), Rhubarbes, Cuisine (boeuf), Cuisines, Aliments -- Consommation, Césium, Horloges à césium, Horloges atomiques, Berne (Suisse), Échelles de temps atomique, Temps (droit international), Johannes Kepler (1571-1630), Des révolutions des orbes célestes - Nicolas Copernic (1473-1543), Héliocentrisme, Énergie éolienne en mer, Portance, Aérodynamique, Relativité restreinte (physique), Muons, Rayons cosmiques, Aquarelle, Le lièvre - Albrecht Dürer (1471-1528), Peintres allemands, Cuisine (plantes aromatiques), Résistance à la chaleur, Thymus (plantes), Abats, Cuisine (abats), Tripes, Aliments -- Réfrigération, Entreposage frigorifique, Frigidaire, Frigo, Danse maorie, Ethnologie -- Nouvelle-Zélande, Linux (logiciels), Rugby, Bayonne (Pyrénées-Atlantiques), Ferias, Aliment, Chevreau (viande), Tacuini sanitatis - al-Muẖtār ibn al-Ḥasan ibn ʿAbdūn ibn Saʿdūn Ibn Buṭlān (10..-1066?), Tangram, Corrosion, Corrosion électrochimique, Assemblages à rivets, Corrosion galvanique, Réactions chimiques -- Mécanismes, Électricité, Symétrie, Constructions géométriques, Génie mécanique, Ressorts et suspension, Ressorts, Volutes, Algues marines, Algues -- Aspect économique, Navires -- Australie, Navires -- Déchets -- Élimination, Navires océanographiques, Navires -- Règlements de sécurité, Sargasses, Mer des, Auteurs arabes, Yuwānīs Ibn Buṭlān (10..-1066?), Jardins -- Aspect symbolique, Famille -- Anthropologie, Famille -- Loisirs, Famille -- Santé et hygiène, Mouton (laine), Quenouilles, Regroupement familial, Veillées, Scènes de la vie quotidienne, Vie quotidienne, Révolution industrielle, Projection cinématographique, Signes et symboles, Carreau, Cartes à jouer, Jeux avec, Pique, Trèfle, Chaleur -- Convection, Dissipateurs thermiques (électronique), Électronique, Acides aminés, Protéines

Salle de théâtre

Photo d'une salle de théâtre : The Journal Tyne Theatre

Cône de lumière. Source : http://data.abuledu.org/URI/50ad8175-cone-de-lumiere

Cône de lumière

Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales : cône de lumière. Un espace de Minkowski, du nom de son inventeur Hermann Minkowski, est un espace affine mathématique à quatre dimensions modélisant l'espace-temps de la relativité restreinte : les propriétés physiques présentes dans cette théorie correspondent à des propriétés géométriques de cet espace, la réciproque n'étant pas vraie car le réalisme physique n'est pas entièrement contenu dans cette géométrisation.

Cône de Lumière. Source : http://data.abuledu.org/URI/50ad8434-cone-de-lumiere

Cône de Lumière

Le cône de lumière de l'évènement e0. La flèche rose montre la dimension temporelle et les flèches grises, les dimensions spatiales. Un événement étant donné, l'ensemble des événements physiquement joignables dans le futur et de ceux du passé à partir desquels on pouvait joindre l'événement donné, forme un cône dans l'espace de Minkowski, appelé cône de lumière, et permettant des raisonnements purement géométriques par des dessins appelés diagrammes de Minkowski. Cet espace est pseudo-euclidien : bien que la métrique ne soit qu'une pseudo-métrique, les géodésiques y sont les droites, ce qui fait dire que cet espace est plat comme dans un espace euclidien. Les inégalités triangulaires qui y sont valables montrent qu'un segment est le chemin le plus long entre deux points, ce qui est une nette différence avec la géométrie euclidienne.

Courbure de l'espace-temps sous le poids de la Terre. Source : http://data.abuledu.org/URI/50ad84e7-courbure-de-l-espace-temps-sous-le-poids-de-la-terre

Courbure de l'espace-temps sous le poids de la Terre

Illustration de l'influence d'une masse (ici, la Terre) sur l'espace-temps. En physique, l'espace-temps est une représentation mathématique de l'espace et du temps comme deux notions inséparables et s'influençant l'une l'autre, suite à l'apparition de la relativité restreinte et sa représentation géométrique qu'est l'espace de Minkowski, et dont l'importance a été renforcée par la relativité générale. Cette conception de l'espace et du temps est l'un des grands bouleversements survenus au début du XXe siècle dans le domaine de la physique, mais aussi pour la philosophie.

Diagrame de Minkowski. Source : http://data.abuledu.org/URI/50ad7e1a-diagrame-de-minkowski

Diagrame de Minkowski

Règle de projection d'un événement A sur les axes (x,ct) et (x', ct') : représentation assymétrique. Dans une représentation asymétrique (la plus commune), où un référentiel (x,ct) est considéré au repos et l'autre (x',ct') en mouvement avec une vitesse v (rectiligne et uniforme) par rapport à lui, le diagramme de Minkowski se construit en représentant le premier référentiel avec des axes orthogonaux. Les coordonnées (x,ct) et (x',ct') d'un même événement A se trouvent par projection sur chaque axe, parallèlement à l'autre axe du référentiel, conformément aux règles usuelles des coordonnées cartésiennes. Cette représentation est alors apte à décrire un certain nombre de raisonnements qualitatifs et quantitatifs : dilatation des durées, contraction des longueurs, combinaison des vitesses... combinaison de transformation de Lorentz successives (unidimensionnelles).

Diagrame de Minkowski. Source : http://data.abuledu.org/URI/50ad7f14-diagrame-de-minkowski

Diagrame de Minkowski

Diagrame de Minkowski : représentation symétrique, avec les lignes de simultanéité pour chaque observateur. Il existe une représentation symétrique du diagramme de Minkowski (appelée également diagramme de Loedel d'après le physicien Enrique Loedel Palumbo qui a introduit le premier cette représentation symétrique) où aucun référentiel n'est privilégié. Les deux systèmes d'axes sont représentés symétriquement par rapport aux directions orthogonales, et sont séparés par un angle \beta tel que : \sin(\beta) = \frac{v}{c}. Contrairement à la représentation asymétrique, l'échelle et la graduation des axes des deux référentiels est la même, ce qui facilite l'interprétation des figures. Cette représentation apparaît plus proche de l'esprit de la relativité où aucun référentiel n'est privilégié : en effet, dans la représentation asymétrique, le fait de prendre les axes Ot et Ox orthogonaux est arbitraire, alors que dans la représentation symétrique, l'orthogonalité de Ot avec Ox' et de Ot' avec Ox résulte des symétries, et donne immédiatement l'invariance de la distance de Minkowski entre deux événements. Par définition, tous les événements situés sur l'axe (0,x) sont simultanés (possèdent le même temps t = 0). En conséquence, toutes les droites parallèles à (O,x) sont des lignes de simultanéité de l'observateur situé dans le référentiel (x,t). De même, toutes les droites parallèles à (O,x') sont les lignes de simultanéité pour l'observateur situé dans le référentiel (x',t'). Tous les événements situés sur ces droites se passent "au même instant" pour un observateur donné. Cette simultanéité de 2 événements distants spatialement et qui dépendent du référentiel correspond bien à celle proposée par Einstein à l'aide de signaux lumineux. Le diagramme de Minkowski illustre la relativité de la simultanéité. La théorie de la relativité restreinte stipule en effet que deux événements peuvent être vus comme simultanés pour un observateur, et non simultanés pour un autre en déplacement par rapport au premier. Il est même possible, quand les deux événements sont séparés par un intervalle de genre espace que deux événements soient vus dans un certain ordre par un observateur, et dans l'ordre inverse par un autre.

Diagrame de Minkowski, dilatation temporelle. Source : http://data.abuledu.org/URI/50ad7fd2-diagrame-de-minkowski-dilatation-temporelle

Diagrame de Minkowski, dilatation temporelle

Dilatation temporelle : les deux observateurs considèrent que le temps passe plus lentement dans l'autre référentiel. Selon la théorie de la relativité restreinte, une horloge animée d'une certaine vitesse par rapport à un référentiel qualifié de fixe sera observée comme battant le temps à un rythme plus lent que celui des horloges de ce référentiel. Cette constatation est réciproque, c'est-à-dire que l'horloge dans le repère "fixe" sera également observée comme plus lente que celles du référentiel en mouvement, à partir de ce dernier référentiel, ce qui semble à première vue paradoxal. Ceci peut être visualisé avec un diagramme de Minkowski. Pour un observateur en A, le temps "simultané" de l'autre référentiel est le temps en B qui est inférieur à A. L'observateur en A peut donc logiquement conclure que le temps se passe plus lentement dans l'autre référentiel. Réciproquement, pour un observateur en B, le temps « simultané » de l'autre référentiel est en C, qui est inférieur à B, et observe également un ralentissement du temps dans l'autre référentiel.

Diagramme de Minkowski. Source : http://data.abuledu.org/URI/50ad7cd0-diagramme-de-minkowski

Diagramme de Minkowski

Diagramme de Minkowski ; trois référentiels sont représentés : une coordonnée spatiale et une temporelle pour chacun.

Minkowski, le trajet d'un photon. Source : http://data.abuledu.org/URI/50ad7bd4-minkowski-le-trajet-d-un-photon

Minkowski, le trajet d'un photon

Référentiel inertiel de Minkowski : Ligne d'univers du photon. En jaune le trajet d'un photon x = ct, avec c = vitesse de la lumière. Le diagramme de Minkowski est un diagramme d'espace-temps développé en 1908 par Hermann Minkowski, qui fournit une représentation des propriétés de l'espace-temps défini par la théorie de la relativité restreinte. Il permet une compréhension qualitative et intuitive de phénomènes comme la dilatation du temps, la contraction des longueurs ou encore la notion de simultanéité, sans utiliser d'équations mathématiques. Pour la lisibilité du diagramme, une seule dimension spatiale est représentée. Contrairement aux diagrammes distance/temps usuels, la coordonnée spatiale est en abscisse et le temps en ordonnée. Les objets décrits par ce diagramme peuvent être pensés comme se déplaçant du bas vers le haut à mesure que le temps passe. La trajectoire d'un objet dans ce diagramme est appelée ligne d'univers. Une particule immobile aura une ligne d'univers verticale. Chaque point du diagramme représente une certaine position dans l'espace et le temps. Cette position est appelée un événement, indépendamment du fait qu'il se passe réellement quelque chose en ce point ou non. Pour faciliter l'utilisation du diagramme, l'axe des ordonnées représente une quantité "ct" qui est le temps multiplié par la vitesse de la lumière "c". Cette quantité est assimilable également à une distance. De cette manière, la ligne d'univers du photon est une droite de pente 45°, l'échelle des deux axes étant identique dans un diagramme de Minkowski.

Minkowski, messages vers le passé. Source : http://data.abuledu.org/URI/50ad8096-minkowski-messages-vers-le-passe

Minkowski, messages vers le passé

Émission d'un message vers le passé, à une vitesse supraluminique, de S à M' via O'. Description de la contradiction à laquelle on aboutit quand on transmet des signaux plus vite que la lumière (émission de signaux dans son propre passé). Adapté de David Bohm, "The Special Theory of Relativity" p. 121. Le diagramme de Minkowski permet de mettre en évidence les contradictions et paradoxes qui interviennent à partir du moment où on postule qu'une information peut se propager à une vitesse supérieure à celle de la lumière. Notamment, il serait possible dans ces conditions de transmettre une information dans son propre passé.

Orthogonalité dans l'espace de Minkowski. Source : http://data.abuledu.org/URI/50ad8268-orthogonalite-dans-l-espace-de-minkowski

Orthogonalité dans l'espace de Minkowski

Orthogonalité dans l'espace de Minkowski pour une vitesse v=0. Dans la représentation qu'est un diagramme de Minkowski, l'orthogonalité minkowskienne possède une propriété que ne possède pas l'orthogonalité euclidienne : l'angle entre un vecteur et son orthogonal varie en fonction de l'inclinaison du vecteur (en géométrie euclidienne, l'angle est fixe et égal à 90°). Quand le vecteur est de « genre lumière », ce vecteur est alors son propre orthogonal : la ligne d'univers est contenue dans le plan de simultanéité. Pour un photon, le temps ne s'écoule pas quand il progresse sur sa ligne d'univers.

Orthogonalité de Minkowski. Source : http://data.abuledu.org/URI/50ad82c2-orthogonalite-de-minkowski

Orthogonalité de Minkowski

Orthogonalité dans l'espace de Minkowski pour une vitesse v=0.9c.

Orthogonalité de Minkowski. Source : http://data.abuledu.org/URI/50ad8308-orthogonalite-de-minkowski

Orthogonalité de Minkowski

Orthogonalité dans l'espace de minkowski pour une vitesse v=c.

Paradoxe des Jumeaux. Source : http://data.abuledu.org/URI/50ad8368-paradoxe-des-jumeaux

Paradoxe des Jumeaux

Paradoxe des jumeaux dans un espace de Minkowski.