Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Cône de lumière. Source : http://data.abuledu.org/URI/50ad8175-cone-de-lumiere

Cône de lumière

Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales : cône de lumière. Un espace de Minkowski, du nom de son inventeur Hermann Minkowski, est un espace affine mathématique à quatre dimensions modélisant l'espace-temps de la relativité restreinte : les propriétés physiques présentes dans cette théorie correspondent à des propriétés géométriques de cet espace, la réciproque n'étant pas vraie car le réalisme physique n'est pas entièrement contenu dans cette géométrisation.

Diagrame de Minkowski. Source : http://data.abuledu.org/URI/50ad7e1a-diagrame-de-minkowski

Diagrame de Minkowski

Règle de projection d'un événement A sur les axes (x,ct) et (x', ct') : représentation assymétrique. Dans une représentation asymétrique (la plus commune), où un référentiel (x,ct) est considéré au repos et l'autre (x',ct') en mouvement avec une vitesse v (rectiligne et uniforme) par rapport à lui, le diagramme de Minkowski se construit en représentant le premier référentiel avec des axes orthogonaux. Les coordonnées (x,ct) et (x',ct') d'un même événement A se trouvent par projection sur chaque axe, parallèlement à l'autre axe du référentiel, conformément aux règles usuelles des coordonnées cartésiennes. Cette représentation est alors apte à décrire un certain nombre de raisonnements qualitatifs et quantitatifs : dilatation des durées, contraction des longueurs, combinaison des vitesses... combinaison de transformation de Lorentz successives (unidimensionnelles).

Diagrame de Minkowski. Source : http://data.abuledu.org/URI/50ad7f14-diagrame-de-minkowski

Diagrame de Minkowski

Diagrame de Minkowski : représentation symétrique, avec les lignes de simultanéité pour chaque observateur. Il existe une représentation symétrique du diagramme de Minkowski (appelée également diagramme de Loedel d'après le physicien Enrique Loedel Palumbo qui a introduit le premier cette représentation symétrique) où aucun référentiel n'est privilégié. Les deux systèmes d'axes sont représentés symétriquement par rapport aux directions orthogonales, et sont séparés par un angle \beta tel que : \sin(\beta) = \frac{v}{c}. Contrairement à la représentation asymétrique, l'échelle et la graduation des axes des deux référentiels est la même, ce qui facilite l'interprétation des figures. Cette représentation apparaît plus proche de l'esprit de la relativité où aucun référentiel n'est privilégié : en effet, dans la représentation asymétrique, le fait de prendre les axes Ot et Ox orthogonaux est arbitraire, alors que dans la représentation symétrique, l'orthogonalité de Ot avec Ox' et de Ot' avec Ox résulte des symétries, et donne immédiatement l'invariance de la distance de Minkowski entre deux événements. Par définition, tous les événements situés sur l'axe (0,x) sont simultanés (possèdent le même temps t = 0). En conséquence, toutes les droites parallèles à (O,x) sont des lignes de simultanéité de l'observateur situé dans le référentiel (x,t). De même, toutes les droites parallèles à (O,x') sont les lignes de simultanéité pour l'observateur situé dans le référentiel (x',t'). Tous les événements situés sur ces droites se passent "au même instant" pour un observateur donné. Cette simultanéité de 2 événements distants spatialement et qui dépendent du référentiel correspond bien à celle proposée par Einstein à l'aide de signaux lumineux. Le diagramme de Minkowski illustre la relativité de la simultanéité. La théorie de la relativité restreinte stipule en effet que deux événements peuvent être vus comme simultanés pour un observateur, et non simultanés pour un autre en déplacement par rapport au premier. Il est même possible, quand les deux événements sont séparés par un intervalle de genre espace que deux événements soient vus dans un certain ordre par un observateur, et dans l'ordre inverse par un autre.

Diagrame de Minkowski, dilatation temporelle. Source : http://data.abuledu.org/URI/50ad7fd2-diagrame-de-minkowski-dilatation-temporelle

Diagrame de Minkowski, dilatation temporelle

Dilatation temporelle : les deux observateurs considèrent que le temps passe plus lentement dans l'autre référentiel. Selon la théorie de la relativité restreinte, une horloge animée d'une certaine vitesse par rapport à un référentiel qualifié de fixe sera observée comme battant le temps à un rythme plus lent que celui des horloges de ce référentiel. Cette constatation est réciproque, c'est-à-dire que l'horloge dans le repère "fixe" sera également observée comme plus lente que celles du référentiel en mouvement, à partir de ce dernier référentiel, ce qui semble à première vue paradoxal. Ceci peut être visualisé avec un diagramme de Minkowski. Pour un observateur en A, le temps "simultané" de l'autre référentiel est le temps en B qui est inférieur à A. L'observateur en A peut donc logiquement conclure que le temps se passe plus lentement dans l'autre référentiel. Réciproquement, pour un observateur en B, le temps « simultané » de l'autre référentiel est en C, qui est inférieur à B, et observe également un ralentissement du temps dans l'autre référentiel.

Diagramme de Minkowski. Source : http://data.abuledu.org/URI/50ad7cd0-diagramme-de-minkowski

Diagramme de Minkowski

Diagramme de Minkowski ; trois référentiels sont représentés : une coordonnée spatiale et une temporelle pour chacun.

Minkowski, le trajet d'un photon. Source : http://data.abuledu.org/URI/50ad7bd4-minkowski-le-trajet-d-un-photon

Minkowski, le trajet d'un photon

Référentiel inertiel de Minkowski : Ligne d'univers du photon. En jaune le trajet d'un photon x = ct, avec c = vitesse de la lumière. Le diagramme de Minkowski est un diagramme d'espace-temps développé en 1908 par Hermann Minkowski, qui fournit une représentation des propriétés de l'espace-temps défini par la théorie de la relativité restreinte. Il permet une compréhension qualitative et intuitive de phénomènes comme la dilatation du temps, la contraction des longueurs ou encore la notion de simultanéité, sans utiliser d'équations mathématiques. Pour la lisibilité du diagramme, une seule dimension spatiale est représentée. Contrairement aux diagrammes distance/temps usuels, la coordonnée spatiale est en abscisse et le temps en ordonnée. Les objets décrits par ce diagramme peuvent être pensés comme se déplaçant du bas vers le haut à mesure que le temps passe. La trajectoire d'un objet dans ce diagramme est appelée ligne d'univers. Une particule immobile aura une ligne d'univers verticale. Chaque point du diagramme représente une certaine position dans l'espace et le temps. Cette position est appelée un événement, indépendamment du fait qu'il se passe réellement quelque chose en ce point ou non. Pour faciliter l'utilisation du diagramme, l'axe des ordonnées représente une quantité "ct" qui est le temps multiplié par la vitesse de la lumière "c". Cette quantité est assimilable également à une distance. De cette manière, la ligne d'univers du photon est une droite de pente 45°, l'échelle des deux axes étant identique dans un diagramme de Minkowski.

Minkowski, messages vers le passé. Source : http://data.abuledu.org/URI/50ad8096-minkowski-messages-vers-le-passe

Minkowski, messages vers le passé

Émission d'un message vers le passé, à une vitesse supraluminique, de S à M' via O'. Description de la contradiction à laquelle on aboutit quand on transmet des signaux plus vite que la lumière (émission de signaux dans son propre passé). Adapté de David Bohm, "The Special Theory of Relativity" p. 121. Le diagramme de Minkowski permet de mettre en évidence les contradictions et paradoxes qui interviennent à partir du moment où on postule qu'une information peut se propager à une vitesse supérieure à celle de la lumière. Notamment, il serait possible dans ces conditions de transmettre une information dans son propre passé.

Orthogonalité dans l'espace de Minkowski. Source : http://data.abuledu.org/URI/50ad8268-orthogonalite-dans-l-espace-de-minkowski

Orthogonalité dans l'espace de Minkowski

Orthogonalité dans l'espace de Minkowski pour une vitesse v=0. Dans la représentation qu'est un diagramme de Minkowski, l'orthogonalité minkowskienne possède une propriété que ne possède pas l'orthogonalité euclidienne : l'angle entre un vecteur et son orthogonal varie en fonction de l'inclinaison du vecteur (en géométrie euclidienne, l'angle est fixe et égal à 90°). Quand le vecteur est de « genre lumière », ce vecteur est alors son propre orthogonal : la ligne d'univers est contenue dans le plan de simultanéité. Pour un photon, le temps ne s'écoule pas quand il progresse sur sa ligne d'univers.

Orthogonalité de Minkowski. Source : http://data.abuledu.org/URI/50ad82c2-orthogonalite-de-minkowski

Orthogonalité de Minkowski

Orthogonalité dans l'espace de Minkowski pour une vitesse v=0.9c.

Orthogonalité de Minkowski. Source : http://data.abuledu.org/URI/50ad8308-orthogonalite-de-minkowski

Orthogonalité de Minkowski

Orthogonalité dans l'espace de minkowski pour une vitesse v=c.

Paradoxe des Jumeaux. Source : http://data.abuledu.org/URI/50ad8368-paradoxe-des-jumeaux

Paradoxe des Jumeaux

Paradoxe des jumeaux dans un espace de Minkowski.