Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Photographie | Densité | Agriculture | Physique | Temps (météorologie) | Météorologie | Cartes géographiques | France | Yan Dargent (1824-1899) | Astronomie | Musées -- Acquisitions | Musées (édifices) | Étoiles | Gravure | Philosophes | Air | Blaise Pascal (1623-1662) | Pléiades (amas stellaire) | Marseille (Bouches-du-Rhône) | ...
Carte des Monuments Historiques en France. Source : http://data.abuledu.org/URI/548d9218-carte-des-monuments-historiques-en-france

Carte des Monuments Historiques en France

Densité de monuments historiques par département en unité par centaine de kilomètres carrés.

Population française. Source : http://data.abuledu.org/URI/51ccb646-population-francaise

Population française

Densité de la France par département (INSEE 2005-2006).

Spectrophotomètre. Source : http://data.abuledu.org/URI/50cdd942-spectrophotometre

Spectrophotomètre

Principe du spectrophotomètre UV-visible monofaisceau. Légende : Source polychromatique, Monochromateur, Diaphragme, Cuve avec échantillon, Cellule photoélectrique, Amplificateur, Afficheur. La spectrophotométrie est une méthode analytique quantitative qui consiste à mesurer l'absorbance ou la densité optique d'une substance chimique donnée, généralement en solution. Plus l'échantillon est concentré, plus il absorbe la lumière dans les limites de proportionnalité énoncées par la loi de Beer-Lambert. La densité optique des échantillons est déterminée par un spectrophotomètre préalablement étalonné sur la longueur d'onde d'absorption de la substance à étudier. Un dispositif monochromateur permet de générer, à partir d’une source de lumière visible ou ultraviolette, une lumière monochromatique, dont la longueur d’onde est choisie par l’utilisateur. La lumière monochromatique incidente d’intensité I_0 ; traverse alors une cuve contenant la solution étudiée, et l’appareil mesure l’intensité I ; de la lumière transmise. La valeur affichée par le spectrophotomètre est l’absorbance à la longueur d’onde étudiée. Le spectrophotomètre peut être utilisé pour mesurer de manière instantanée une absorbance à une longueur d’onde donnée, ou pour produire un spectre d’absorbance (spectrophotomètre à balayage). Dans ce dernier cas, le dispositif monochromateur décrit en un temps court l’ensemble des longueurs d’onde comprises entre deux valeurs choisies par l’opérateur.

Angle de réfraction. Source : http://data.abuledu.org/URI/5102971d-angle-of-refraction

Angle de réfraction

Angle de réfraction : La réfraction, en physique des ondes — notamment en optique, acoustique et sismologie — est un phénomène de déviation d'une onde lorsque sa vitesse change entre deux milieux. La réfraction survient généralement à l'interface entre deux milieux, ou lors d'un changement de densité ou d'impédance du milieu.

Ascendance thermique. Source : http://data.abuledu.org/URI/50b10e19-ascendance-thermique

Ascendance thermique

Schématisation du phénomène d'ascendance thermique : Le nuage (A) au-dessus du sol. Le soleil augmente la température du sol qui, à son tour, réchauffe l'air au-dessus (1). La bulle d'air chaud commence à s'élever (2) jusqu'à un certain point. La masse condense et redescend, à cause de sa température inférieure (3). Le vol thermique consiste à utiliser des courants d'air ascendants (appelés « thermiques », « ascendances », « pompes » ou « bulles ») pour monter. L'aérologie fait appel à quelques notions physiques : l'air chaud moins dense est plus léger que l'air froid ; si l'on considère la différence de température moyenne entre celle au niveau de la mer et celle au niveau de la tropopause, divisé par la hauteur, on obtient une diminution moyenne de la température de la masse d'air avec l'élévation de l'altitude de 0,65 °C tous les 100 m ; le soleil réchauffe de manière négligeable l'air directement mais le soleil réchauffe le sol de manière variable selon sa nature qui lui ensuite chauffe l'air au contact du sol par conduction ; lorsque qu'une masse d'air au contact du sol est suffisamment réchauffée, sa densité baisse, elle devient plus légère et s'élève si elle est entourée d'air plus froid ; cette « bulle » d'air s'élève aussi longtemps que l'air environnant est plus froid ; la « bulle » elle-même se refroidit non pas du fait du contact avec de l'air plus frais avec l'altitude mais du fait qu'avec l'altitude, la pression baisse, la bulle se dilate donc, la dilatation d'un gaz provoque son refroidissement à raison de 1 °C tous les 100 m de manière invariable.

Botte de foin. Source : http://data.abuledu.org/URI/5019c8a7-botte-de-foin

Botte de foin

Botte de foin traditionnelle. La section d’une botte est normalement de 36 cm × 46 cm. La longueur varie en général entre 76 et 91 cm. La principale distinction entre les petites bottes rectangulaires se situe au niveau de la densité.

Calcul de la hauteur des échos d'un radar. Source : http://data.abuledu.org/URI/5232d89e-calcul-de-la-hauteur-des-echos-d-un-radar

Calcul de la hauteur des échos d'un radar

Calcul de la hauteur du faisceau radar au-dessus du sol, légendé en français. En plus de la distance, on peut calculer la hauteur au-dessus du sol où se trouvent les cibles. Cela se calcule en connaissant l’angle d’élévation du radar et la courbure de la Terre. Il faut également tenir compte de la variation de la densité des couches de l’atmosphère. En effet, le faisceau radar ne se propage pas en ligne droite comme dans le vide mais suit une trajectoire courbe à cause du changement de l’indice de réfraction avec l'altitude.

Carré magique. Source : http://data.abuledu.org/URI/52f56658-carre-magique

Carré magique

Carré magique normal d’ordre 3 et de constante magique 15. En mathématiques, un carré magique d’ordre n est composé de n^{2} nombres entiers, écrits sous la forme d’un tableau carré. Ces nombres sont disposés de sorte que leurs sommes sur chaque rangée, sur chaque colonne et sur chaque diagonale principale soient égales. On nomme alors constante magique (et parfois densité) la valeur de ces sommes.

Chauffe-eau solaire. Source : http://data.abuledu.org/URI/50cb86b4-chauffe-eau-solaire

Chauffe-eau solaire

Chauffe-eau solaire : A-Entrée de l'eau froide, B-Réservoir isolé, C-Circulation à travers un panneau solaire, D-Rayonnement solaire absorbé. Échanges d'énergie à l'intérieur du réservoir par un échangeur de chaleur. E-Sortie de l'eau chaude. F+ : à l'intérieur du réservoir, l'eau est plus chaude en hauteur qu'en G-, du fait de sa moindre densité (l'eau chaude a tendance à monter naturellement).

Circulation thermohaline. Source : http://data.abuledu.org/URI/518be355-circulation-termohaline

Circulation thermohaline

La circulation thermohaline mondiale correspond au couplage de plusieurs cellules de convections océaniques et participe à la redistribution de la chaleur. La circulation thermohaline est la circulation permanente à grande échelle de l'eau des océans, engendrée par des écarts de température et de salinité des masses d'eau. La salinité et la température ont en effet un impact sur la densité de l'eau de mer. Les eaux refroidies et salées plongent au niveau des hautes latitudes (Norvège, Groenland, etc.) et descendent vers le sud, à des profondeurs comprises entre 1 et 3 km. Elles sont alors réchauffées sous les Tropiques, et remontent à la surface, où elles se refroidissent à nouveau, et ainsi de suite au travers de courants à forte composante latitudinale transverse. On estime qu'une molécule d'eau fait le circuit entier en environ 1 000/1 500 ans.

Convection dans une casserole. Source : http://data.abuledu.org/URI/5232ff59-convection-dans-une-casserole

Convection dans une casserole

Principe de la convection thermique dans une casserole d'eau : Le mouvement dans une casserole posée sur le feu s'explique par les différences de densité créées par le chauffage. Le fluide se met en mouvement spontanément quand la différence de température entre le haut et le bas de la couche d'eau atteint une valeur critique.

Densité d'énergie de quelques carburants. Source : http://data.abuledu.org/URI/50cb287b-densite-d-energie-de-quelques-carburants

Densité d'énergie de quelques carburants

Densité d'énergie volumique et massique brute de quelques carburants (à l'exclusion des comburants). En physique, la densité d'énergie représente l'énergie par unité de volume en un point, concernant une forme d'énergie non localisée. Le concept de densité d'énergie est abondamment utilisé en relativité générale et en cosmologie car il intervient explicitement dans les équations déterminant le champ gravitationnel (les équations d'Einstein), mais il est également présent en mécanique des milieux continus et en électromagnétisme. Dans les applications de stockage d'énergie, la densité énergétique fait référence soit à la densité d'énergie massique, soit à la densité d'énergie volumique. Plus la densité d'énergie est élevée, plus il y a d'énergie pouvant être stockée ou transportée pour un volume ou une masse donné. Ceci est particulièrement important dans le domaine des transports (automobile, avion, fusée...). On notera que le choix d'un carburant pour un moyen de transport, outre les aspects économiques, tient compte du rendement du groupe motopropulseur. Les sources d'énergie de plus forte densité sont issues des réactions de fusion et de fission. En raison des contraintes générées par la fission, elle reste cantonnée à des applications bien précises. La fusion en continu, elle, n'est pas encore maîtrisée à ce jour. Le charbon, le gaz et le pétrole sont les sources d'énergie les plus utilisées au niveau mondial, même s'ils ont une densité d'énergie beaucoup plus faible, le reste étant fourni par la combustion de la biomasse qui a une densité d'énergie encore plus faible. Liste des carburants cités : Aluminium, Silicium, Anthracite, Fer, Zinc, Magnésium, Polystyrène, Polyéthylène, Borohydrure de lithium, Polyester, Métabolisme des graisses, Diesel, Essence, Kérosène, Butanol, Butane GPL, Propane GPL, Métabolisme du sucre, Glucose, Éthanol, Lithium, Bitumineux, Hydrazine, Méthanol, Sodium, Ammoniac liquide, Gaz naturel, Hydrogène liquide, Dihydrogène (700 bar), Dihydrogène, Méthane, Batterie lithium-ion.

Densité de la pie bavarde en France. Source : http://data.abuledu.org/URI/588ca2c5-densite-de-la-pie-bavarde-en-france

Densité de la pie bavarde en France

Indice de répartition/densité (malgré augmentation dans les villes) des populations d’oiseaux communs, pour la pie bavarde (Pica pica), selon l'Indice d’abondance des populations d’oiseaux communs, Programme STOC. Attention légende colorée de type logarithmique (permet de mieux saisir les variations dans les zones rurales).

Dépôt de givre sur feuilles. Source : http://data.abuledu.org/URI/5234c0f8-depot-de-givre-sur-feuilles

Dépôt de givre sur feuilles

Dans l'atmosphère, la source de gouttelettes pour le givre est un nuage ou le brouillard. Le givrage effectué sur des surfaces solides constitue alors un revêtement opaque et granuleux qui s'accroit dans la direction d’où vient le faible vent. Il est fréquent en hiver sur le sol, la végétation, les objets et les aéronefs. Le givre peut également se déposer sur des flocons de neige dans les nuages et les enrober d'un dépôt glacé qui augmentera leur densité (grésil).

Élevage extensif de rennes en Suède. Source : http://data.abuledu.org/URI/52080eb7-elevage-extensif-de-rennes-en-suede

Élevage extensif de rennes en Suède

Rennes en Suède : l'élevage extensif ou pâturage extensif (ranching pour les anglo-saxons) est une méthode d'élevage de bovins, ovins, etc. caractérisée par une faible densité de chargement d'effectifs d'animaux à l'hectare. Hormis le sel mais aussi le fourrage en cas de sécheresse, aucun apport supplémentaire de nourriture n'est requis, ce qui oppose ce mode d'élevage à l'élevage intensif. Il présente un grand intérêt pour la biodiversité, car les herbivores, ne surexploitent pas le milieu, ne contribuent pas à l'eutrophiser et entretiennent des milieux ouverts, tout en jouant un rôle de « corridors biologiques ambulant » (en transportant de nombreuses propagules (graines, spores, larves, etc.) sous leurs sabots, dans leurs poils, dans leur tube digestif…). C'est à ce titre un des modes de gestion restauratoire utilisée pour l'entretien et la restauration de milieux naturels ou semi naturels.

Générateur électrostatique de Van Marum. Source : http://data.abuledu.org/URI/50c27adf-generateur-electrostatique-de-van-marum

Générateur électrostatique de Van Marum

Grande machine électrostatique de Van Marum, exposée au musée Teyler, à Haarlem, Pays-Bas. À droite, batterie de bouteilles de Leyde. La machine électrostatique est ainsi nommée parce qu'elle fait appel aux lois de l'électrostatique à la différence des machines dites électromagnétiques. Bien que des moteurs électrostatiques aient été imaginés (ils fonctionnent sur le principe de la réciprocité des générateurs électrostatiques), ils n'ont pas eu de succès. La puissance des machines du XVIIIe siècle et du XIXe siècle était en effet infime (quelques watts) et les frottements mécaniques ne leur laissaient qu'un très mauvais rendement. La raison en est que la densité maximale d'énergie du champ électrique dans l'air est très faible. Les machines électrostatiques ne peuvent être utilisables (de manière industrielle) que si elles fonctionnent dans un milieu où la densité d'énergie du champ électrique est assez élevée, c'est-à-dire pratiquement dans un gaz comprimé. L'invention du condensateur électrique sous la forme de la bouteille de Leyde (par E.-G. Kleist, Van Musschenbroek et son élève Cuneus, améliorée par sir William Watson, 1745-1747) permet de renforcer l'intensité des décharges : 1768, machine de Ramsden ; 1784, la machine de Van Marum.

Ionisation par électrospray. Source : http://data.abuledu.org/URI/50ac0ea6-ionisation-par-electrospray

Ionisation par électrospray

Spectrométrie de masse avec inoisation par électrospray. Son principe est le suivant : à pression atmosphérique, les gouttelettes de solutés sont formées à l'extrémité d'un fin capillaire porté à un potentiel élevé. Le champ électrique intense leur confère une densité de charge importante. Sous l'effet de ce champ et grâce à l'assistance éventuelle d'un courant d'air co-axial, l'effluent liquide est transformé en nuage de fines gouttelettes (spray) chargées suivant le mode d'ionisation. Sous l'effet d'un second courant d'air chauffé, les gouttelettes s'évaporent progressivement. Leur densité de charge devenant trop importante, les gouttelettes explosent en libérant des microgouttelettes constituées de molécules protonées ou déprotonées de l'analyte, porteuses d'un nombre de charges variable. Les ions ainsi formés sont ensuite guidés à l'aide de potentiels électriques appliqués sur deux cônes d'échantillonnage successifs faisant office de barrières avec les parties en aval maintenues sous un vide poussé (<10-5 Torr). Durant ce parcours à pression élevée, les ions subissent de multiples collisions avec les molécules de gaz et de solvant, ce qui complète leur désolvatation. En faisant varier les potentiels électriques appliqués dans la source il est possible de provoquer des fragmentations plus ou moins importantes.

Mémorial de John Snow à Londres. Source : http://data.abuledu.org/URI/51bf7e2e-memorial-de-john-snow-a-londres

Mémorial de John Snow à Londres

Mémorial de John Snow, Broadwick Street à Londres sous forme d'une pompe sans poignée : Le docteur Snow est célèbre pour avoir étudié la propagation de l'épidémie de choléra de 1854 et avoir émis l'hypothèse d'une dissémination par l'intermédiaire de la distribution d'eau. Pour rechercher la source de l’épidémie il a utilisé une carte de Londres avec la densité des cas sur plusieurs périodes. Cette méthode lui a permis de remarquer que les cas se concentraient autour d'une pompe à eau de la Broad Street, dans le district de Soho.

Musée des santons à Marseille. Source : http://data.abuledu.org/URI/50e8e8fe-musee-des-santons-a-marseille

Musée des santons à Marseille

Musée des santons de Provence Marcel Carbonel (collection privée marcel Carbonel). Architecte d'intérieur, Maurice Padovani, Marseille : Marcel Carbonel, né à Lyon le 25 juillet 1911, décédé à Marseille le 25 mai 2003 à l'âge de 92 ans, est un santonnier marseillais, doyen de sa profession. Pour fabriquer le moule original d'une nouvelle création appelé « moule-mère », il utilise du plâtre de Paris de couleur jaunâtre; ses particularités sont la finesse de l'empreinte, sa densité et sa solidité. Pour les moules de reproduction, il utilise un plâtre moins dur qui permet de démouler plus facilement le sujet. La forme des moules de reproduction est importante ; elle est arrondie en haut du moule afin de faciliter l'estampage en série. Ensuite, il laisse sécher le santon et le cuit dans un four électrique à une température qui atteint progressivement 980 °C. Il décore ses santons avec des gouaches de sa propre fabrication. Grâce à sa formation de lithographe, il met au point ses propres gouaches en broyant manuellement des pigments avec de la gomme arabique dure, dite « Kitir », qu'il décante lui-même. Il utilise 19 pigments de base (ocre rouge, ocre jaune, terre de sienne, terre de sienne brûlée, rouge hélios, rouge d'alizarine, rose tyrien, vert de chrome, vert valentine, violet d'alizarine, jaune hansa, jaune de chrome, bleu de cobalt, bleu de manganèse, bleu outremer, bleu de prusse, noir d'ivoire, blanc de titane, blanc de lithopone, qu'il mélange pour créer sa propre palette de 124 couleurs répertoriées et dosées. Ce procédé, d'après son expérience, permet en effet d'obtenir des couleurs plus vives et éclatantes que les gouaches en tube du commerce auxquelles ont généralement recours les autres santonniers. En 1961, la discipline santonnière rentre à la Sorbonne où Marcel Carbonel sera le premier santonnier à être distingué Meilleur ouvrier de France ; cette discipline est toujours en vigueur. Le 9 mai 2003, il est fait chevalier de la Légion d'honneur. Sa collection privée est constituée de pièces originales faites d'argile (cuite ou crue), papiers mâchés, bois sculpté et précieux, verre filé de Murano, plâtre, céramique, porcelaine, polychrome, maïs, liège, tissus (santons habillés). En 1997, cette collection est mise en valeur au travers d'un musée permettant aux visiteurs d'explorer cet artisanat. De la collection privée de Marcel Carbonel de plus de quatre mille cinq cents pièces, seules 2 421 pièces sont exposées.

Pleiades d'étoiles. Source : http://data.abuledu.org/URI/501e332b-pleiades-d-etoiles

Pleiades d'étoiles

Les Pléiades, ou amas M45, sont un amas ouvert d'étoiles qui s'observe dans l'hémisphère nord, dans la constellation du Taureau. On dénombre aujourd'hui dans cet amas environ 3 000 étoiles, dont une douzaine sont visibles à l'œil nu. Il s'étend sur 2°, soit l'équivalent de 4 fois le diamètre apparent de la Lune. Sa densité est donc relativement faible par rapport aux autres amas ouverts. L'âge de l'amas est estimé à 100 millions d'années, mais il ne devrait pas vivre longtemps puisqu'il devrait se séparer dans 250 millions d'années, en partie à cause de sa faible densité (il s'agit ici de la vie de l'amas et non de celle des étoiles qui le composent).

Portrait de Blaise Pascal. Source : http://data.abuledu.org/URI/52b6c1d8-portrait-de-blaise-pascal

Portrait de Blaise Pascal

Portrait de Blaise Pascal (1623-1662). Illustration par Yan Dargent (1824-1899), in Jean Rambosson, Histoire des météores et des grands phénomènes de la nature, p.135, Firmin-Didot, 1883 (wikisource) : Les couches supérieures de l’air, pesant de tout leur poids sur les couches inférieures, leur donnent des densités proportionnelles aux pressions qu’elles éprouvent ; la densité de l’air va donc en décroissant de la surface de la terre aux limites de l’atmosphère ; c’est ce que démontre l’expérience de Pascal...

Répartition de la pie bavarde. Source : http://data.abuledu.org/URI/50b7f33d-repartition-de-la-pie-bavarde

Répartition de la pie bavarde

Indice de répartition/densité (malgré augmentation dans les villes) des populations d’oiseaux communs, pour la pie bavarde (Pica pica), selon l'Indice d’abondance des populations d’oiseaux communs, Programme STOC. Attention légende colorée de type logarithmique (permet de mieux saisir les variations dans les zones rurales).

Schéma de la croûte terrestre. Source : http://data.abuledu.org/URI/5094e867-schema-de-la-croute-terrestre

Schéma de la croûte terrestre

Schéma simplifié de la coupe de la croûte terrestre : 1) Croûte continentale ; 2) Croûte océanique ; 3) Manteau. La croûte terrestre est la partie superficielle et solide du matériau dont est faite la Terre. C'est la partie supérieure de la lithosphère (qui constitue les plaques tectoniques). La limite entre la croûte terrestre et le manteau supérieur est la discontinuité de Mohorovicic, ou Moho en abrégé. La croûte terrestre existe en deux variétés radicalement différentes, la croûte continentale, de composition pétrologique principalement granitoïdique, et la croûte océanique de nature essentiellement basaltique. De nombreux autres critères différencient ces deux types de croûtes : densité moyenne (2,3 contre 2,7), épaisseur caractéristique (typiquement 35 km contre environ 6 km), âge moyen des matériaux (en majorité entre 1 et 3 Ga contre moins de 200 Ma).

Semis de maïs. Source : http://data.abuledu.org/URI/5288c9e5-semis-de-mais

Semis de maïs

Semis de maïs Subito. Le semis se fait à l’aide de semoirs de précision, permettant de contrôler tant la profondeur (3 à 5 cm), l’écartement des lignes que la densité sur les lignes. L'implantation optimale pour les cultivars de maïs cornés modernes (grains et fourrage) est composée de rangs espacés de 75 cm (pour un bon ensoleillement) avec un plant tous les 13 cm (pour une bonne irrigation et un bon développement racinaire) soit 102 500 plants/hectare. On obtient ainsi de beaux épis, peu de verse et une bonne tolérance à la sécheresse. Plus on augmente la densité du semis, plus les plants sont grands mais avec une tige plus fine et de plus petits épis plus ou moins développés.

Six boules de billard. Source : http://data.abuledu.org/URI/51d95659-six-boules-de-billard

Six boules de billard

Six boules de billard ; de gauche à droite : 1) Billard russe et Kaisa (en) —68 mm ; 2) Billard français —61.5 mm ; 3) Billard américain —57 mm 4) Billard anglais —56 mm ; 5) Snooker —52.5 mm ; 6) Billard pour enfant —51 mm. Une boule de billard, appelée aussi bille de billard, est un objet sphérique roulant sur une table de billard après avoir été poussé par une tige de bois appelée queue. Le nombre, le type, le diamètre, la couleur (le plus souvent blanche ou rouge comme la carambole) et le modèle des boules diffèrent selon la variante des jeux de billard. Divers critères de spécifications tels que la densité, la rondeur, la dureté, le coefficient de frottement ou la résilience sont requis pour assurer une bonne jouabilité.

Structure interne de Pluton. Source : http://data.abuledu.org/URI/50ac1289-structure-interne-de-pluton

Structure interne de Pluton

Structure interne hypothétique de Pluton : 1 - Azote gelé ; 2 - Glace d'eau ; 3 - Noyau rocheux. La composition interne de Pluton est pour l'instant inconnue. S'il y a eu différenciation planétaire, il pourrait y avoir un noyau rocheux. Si l'on accorde à Pluton une densité de 2, valeur approximative, la densité voisine de 1 des glaces détectées en surface doit être compensée par une masse rocheuse, de densité de l'ordre de 4 ou 5, en proportion égale aux glaces d'eau et d'éléments volatils (azote, méthane, oxyde de carbone). Ces roches pourraient affleurer à la surface sans être visibles car dépourvues de signatures spectrales caractéristiques, ou bien être recouvertes d'un manteau de glaces. Avec une teneur en glace d'eau de l'ordre de 50 % ou plus pour la masse de Pluton, la présence en profondeur d'eau liquide sous l'effet de la haute pression est envisageable dans les couches profondes, coexistant avec de la glace sous haute pression. L'UAI, lors de son 26e congrès tenu le 24 août 2006 en République tchèque, a décidé au terme d'une semaine de débats de compléter la définition de planète, disant qu'une planète élimine de son voisinage tous les objets ayant une taille qui lui soit comparable. Ce qui n'est pas le cas de Pluton, qui partage son espace avec d'autres objets transneptuniens et qui est reclassé en planète naine. Le "Minor Planet Center" lui attribua le 7 septembre 2006 le numéro d'objet mineur 134340.

Tableau utilisé par Albert Einstein. Source : http://data.abuledu.org/URI/503d3a64-tableau-jpg

Tableau utilisé par Albert Einstein

Tableau noir utilisé par Albert Einstein en 1931 lors d'une conférence à Oxford. Les trois dernières lignes donnent une valeur pour la densité (ρ), le rayon (P) et l'âge de l'univers. A blackboard used by [[Albert Einstein]] in a 1931 lecture in [[Oxford]]. The last three lines give numerical values for the density, radius (P), and age of the universe.