Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Constructions géométriques | Compas | Géométrie | Cercles | Règles | Symétrie | Constructions à la règle et au compas | Dessin -- Instruments | Dessin -- Technique | Dessin -- Matériel | Arcs | Médiatrices | Perpendiculaires | Parallèles (géométrie) | Main | Compas, |
Arc de cercle. Source : http://data.abuledu.org/URI/52ac7a14-arc-de-cercle

Arc de cercle

Cercle de rayon "r", arc de cercle de longueur "L" soustendu par un angle θ (theta) avec un secteur circulaire de surface "A".

Couper un cercle en 8. Source : http://data.abuledu.org/URI/52ac7829-couper-un-cercle-en-8

Couper un cercle en 8

Le tracé d'une bissectrice permet de définir deux arcs égaux, et ici de diviser le cercle en 8 parties égales : placer un point entre chaque point déjà placé : on place la pointe du compas sur un des points et l'on trace un arc de cercle à l'extérieur du cercle de base, et l'on fait de même sur le point voisin ; l'intersection des deux arcs définit un point. Puis, on trace à la règle le diamètre passant par ce point-là ; il coupe l'arc de cercle en deux parts égales (bissectrice de l'angle). Ainsi, si le cercle est déjà coupé en 4 parts, on en obtient 8 ; si le cercle est déjà coupé en 12 parts, on en obtient 24. On peut recouper les arcs en 2 par la même méthode, et multiplier ainsi le nombre d'arcs par 2, pour obtenir encore plus d'arcs.

Couper un cercle en douze parties égales. Source : http://data.abuledu.org/URI/52ac7731-couper-un-cercle-en-douze-parties-egales

Couper un cercle en douze parties égales

Méthode pour couper un cercle en douze parties égales en trois étapes : Avant de tracer le cercle, on trace les diamètres horizontal et vertical (droites horizontale et verticale passant par le centre) ; ce sont les « traits d'axe du cercle ». Ainsi, lorsque l'on trace le cercle, celui-ci est séparé en 4 quartiers. Pour le séparer en 12 parts égales, on place la pointe du compas sur l'intersection d'un axe et du cercle, tout en gardant un écartement égal au rayon. Puis, on trace les arcs de cercle coupant le cercle. On procède ainsi pour chaque intersection axe-cercle, on obtient au total 12 parts égales.

Dessin d'un cercle au compas. Source : http://data.abuledu.org/URI/52accc5a-dessin-d-un-cercle-au-compas

Dessin d'un cercle au compas

Dessin d'un cercle au compas.

Construction d'une parallèle. Source : http://data.abuledu.org/URI/50c4f61d-construction-d-une-parallele

Construction d'une parallèle

Construction à la règle et au compas d'une parallèle à une droite passant par un point donné : La parallèle à la droite (AB) passant par un point C se construit à l'aide de la propriété de la droite des milieux. On construit le symétrique C1 du point C par rapport à A puis le symétrique C2 du point C1 par rapport à B. la droite recherchée est la droite (CC2). Le théorème des milieux est un cas particulier de la réciproque du théorème de Thalès.

Construction d'une perpendiculaire. Source : http://data.abuledu.org/URI/50c4f6cf-construction-d-une-perpendiculaire

Construction d'une perpendiculaire

Construction à la règle et au compas d'une perpendiculaire à une droite passant par une point extérieur à la droite : La perpendiculaire à la droite (AB) passant par un point C non situé sur (AB) est la droite (CC') joignant le point C à son symétrique par rapport à la droite (AB). Si le point C est situé sur (AB), il suffit de prendre le symétrique A' (ou B') du point A (ou du point B) par rapport à C, la perpendiculaire est alors la médiatrice de [AA'] (ou de [BB']).

Symétrique d'un point par rapport à un point. Source : http://data.abuledu.org/URI/50c4f489-symetrique-d-un-point-par-rapport-a-un-point

Symétrique d'un point par rapport à un point

Construction du symétrique d'un point A par rapport à un point B, à la règle et au compas.

Symétrique d'un point par rapport à une droite. Source : http://data.abuledu.org/URI/50c4f554-symetrique-d-un-point-par-rapport-a-une-droite

Symétrique d'un point par rapport à une droite

Construction du symétrique d'un point C par rapport à une droite à la règle et au compas : Le symétrique du point C par rapport à la droite (AB) s'obtient en construisant le point d'intersection (différent de C) entre le cercle de centre A passant par C et le cercle de centre B et passant par C. Si le point C est sur la droite (AB), il est son propre symétrique et aucune construction n'est nécessaire.

Symétrique d'un point par rapport à une droite. Source : http://data.abuledu.org/URI/50c4f82c-symetrique-d-un-point-par-rapport-a-une-droite

Symétrique d'un point par rapport à une droite

Construction au compas seul du symétrique d'un point par rapport à une droite. Le symétrique du point C par rapport à la droite (AB) est le point d'intersection des cercles de centres A et B et passant par C. Dans la construction la droite (AB) est tracée en pointillés pour permettre de suivre le raisonnement mais elle ne sert pas en tant que telle dans la construction. En géométrie classique plane, le théorème de Mohr Mascheroni, démontré par Georg Mohr en 1672 et par Lorenzo Mascheroni en 1797, affirme que si une construction géométrique est possible à la règle et au compas, alors elle est possible au compas seul (sauf le tracé effectif des droites). Est considéré comme constructible tout point d'intersection de deux cercles dont les centres sont des points déjà construits et dont les rayons sont des distances entre des points déjà construits.