Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Cercles | Géométrie | Cercles du triangle | Puissances (algèbre) | Puissances | Points (géométrie) | Compas | Polygones | Constructions géométriques | Symétrie | Racine carrée | Trigonométrie | Fonctions trigonométriques | Pi (le nombre) | Angles | Arcs (géométrie) | Cercle | Aires (surfaces) | Claude Ptolémée (0100?-0170?) | ...
Cercles circonscrits à un triangle. Source : http://data.abuledu.org/URI/518573ae-cercles-circonscrits-a-un-triangle

Cercles circonscrits à un triangle

Trois cercles circonscrits à des triangles.

Puissance d'un point. Source : http://data.abuledu.org/URI/5184c38b-puissance-d-un-point

Puissance d'un point

En géométrie euclidienne du plan, la puissance d'un point P par rapport à un cercle de centre O et de rayon R est un nombre qui indique la position de P par rapport à ce cercle.

Puissance d'un point. Source : http://data.abuledu.org/URI/5184c455-puissance-d-un-point

Puissance d'un point

Détermination de la valeur algébrique de la puissance d'un point extérieur à un cercle. En géométrie euclidienne du plan, la puissance d'un point P par rapport à un cercle de centre O et de rayon R est un nombre qui indique la position de P par rapport à ce cercle.

Puissance d'un point intérieur à un cercle. Source : http://data.abuledu.org/URI/5184c543-puissance-d-un-point-interieur-a-un-cercle

Puissance d'un point intérieur à un cercle

Détermination de la valeur algébrique de la puissance d'un point intérieur à un cercle : PAxPB = (r+d) (r-d).

Théorème de Ptolémée. Source : http://data.abuledu.org/URI/518574f8-theoreme-de-ptolemee

Théorème de Ptolémée

Quadrilatère illustrant le théorème de Ptolémée. Le théorème de Ptolémée est un théorème de géométrie euclidienne. Il décrit une relation algébrique entre les longueurs des côtés et des diagonales d'un quadrilatère, équivalente à l'inscription du quadrilatère dans un cercle. L'implication directe est attribuée à l'astronome et mathématicien grec Ptolémée, dont il se servit pour ses calculs liés à l'astronomie.

Triangle et cercle circonscrit. Source : http://data.abuledu.org/URI/5180cb40-triangle-et-cercle-circonscrit

Triangle et cercle circonscrit

Médiatrice et cercle circonscrit d'un triangle.

Calcul de l'aire du cercle avec Géogébra. Source : http://data.abuledu.org/URI/51e4dfeb-calcul-de-l-aire-du-cercle-avec-geogebra

Calcul de l'aire du cercle avec Géogébra

Calcul de l'aire du cercle avec Géogébra : rayon x demi-circonférence. On déduit d’une propriété analogue pour les polygones réguliers que l’aire d’un cercle égale son demi-périmètre multiplié par son rayon. le périmètre du polygone est à peu près 2πr alors qu’en redistribuant les triangles formés on remarque que son aire est à peu près πr2. Pour formaliser le « à peu près » il faudrait faire tendre le nombre de côtés du polygone vers l’infini, ce qui illustre déjà la nature « analytique » de π.

Calcul de racine carrée au compas. Source : http://data.abuledu.org/URI/50c50a31-calcul-de-racine-carree-au-compas

Calcul de racine carrée au compas

Construction au compas seul de la racine carrée du produit xy. Si A a pour abscisse x et B pour abscisse y, on construit les points A' et B' d'abscisses -x et -y Les cercles de diamètres [AB'] et [A'B] se coupent sur l'axe des ordonnées en un point d'ordonnée sqrt{xy} (propriété de la hauteur dans un triangle rectangle). Il est toujours possible de rabattre sqrt{xy} en abscisse par symétrie par rapport à la première bissectrice (constructible au compas).

Construction du milieu d'un arc au compas. Source : http://data.abuledu.org/URI/50c5066b-construction-du-milieu-d-un-arc-au-compas

Construction du milieu d'un arc au compas

Construction au compas seul du milieu d'un arc : OABC est un parallélogramme de la forme OA=OB, I est le milieu de l'arc AB de centre O, D est le point de la demi-droite [OI) telle que CA=CD, alors OD=CI. En effet, CD^2=CA^2=2CO^2+OA^2. Ensuite il suffit d'appliquer le théorème de Pythagore dans les deux triangles rectangle COI et COD : CI^2=CO^2+OI^2=CO^2+OA^2, OD^2=CD^2-CO^2=CO^2+OA^2. Or cette figure est réalisable au compas seul et permet donc de placer le point I. Si l'on suppose donnés le point O et l'arc AB, on construit le point C intersection du cercle de centre B et passant par A avec le cercle de centre O et de rayon AB. On construit de même le point C' intersection du cercle de centre A passant par O et du cercle de centre O et de rayon AB. Le point D est à l'intersection des cercles de centre C et C' et passant par A et B. Le point I est à l'intersection des cercles de centre C et C' et de rayon OD.

Fonctions trigonométriques dans le cercle unité. Source : http://data.abuledu.org/URI/5309cf73-fonctions-trigonometriques-dans-le-cercle-unite

Fonctions trigonométriques dans le cercle unité

Représentation des fonctions trigonométriques dans le cercle unité. Le cercle trigonométrique, en revanche, permet la définition des fonctions trigonométriques pour tous les réels positifs ou négatifs, pas seulement pour des angles de mesure en radians comprise entre 0 et π/2. Sur ce cercle sont représentés certains angles communs, et sont indiquées leurs mesures en radians figurant dans l'intervalle [–2π, 2π], soit deux mesures par angle et même trois pour l'angle nul. Notez que les angles positifs sont dans le sens trigonométrique, contraire à celui des aiguilles d'une horloge, et les angles négatifs dans le sens horaire. Une demi-droite qui fait un angle θ avec la demi-droite positive Ox de l'axe des abscisses coupe le cercle en un point de coordonnées (cos θ, sin θ). Géométriquement, cela provient du fait que l'hypoténuse du triangle rectangle ayant pour sommets les points de coordonnées (0, 0), (cos θ, 0) et (cos θ, sin θ) est égale au rayon du cercle donc à 1. Le cercle unité peut être considéré comme une façon de regarder un nombre infini de triangles obtenus en changeant les longueurs des côtés opposés et adjacents mais en gardant la longueur de leur hypoténuse égale à 1. Source : http://fr.wikipedia.org/wiki/Fonction_trigonom%C3%A9trique.