Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Physique | Euler, Cercle d' | Centre de gravité | Photographie | Géométrie | Brouettes | Outils | Seizième siècle | Temps, Mesure du | Oscillations | Peinture | Galilée (1564-1642) | Transfert de quantité de mouvement | Jeux de tables | Transfert | Physique mécanique | Transfert d'impulsion (mécanique) | Automobiles | Géodésie | ...
Équilibre d'une brouette dans une pente. Source : http://data.abuledu.org/URI/51de632d-equilibre-d-une-brouette-dans-une-pente

Équilibre d'une brouette dans une pente

Etude statique de la brouette. Les longueurs des forces sont en proportion en rapport avec ce quelles représentent vraiment, illustration de la complexité du solide par rapport au point matériel. De manière générale, le centre de poussée est distinct du centre de gravité. Lorsque la droite reliant le centre de poussée au centre de gravité n'est pas confondue avec la droite portant la résultante de la poussée, il en résulte un couple donc un basculement de l'objet.

Poupée bobo. Source : http://data.abuledu.org/URI/53e777e5-poupee-bobo

Poupée bobo

Composition d'une poupée bobo, légendée en français. Source : http://fr.wikipedia.org/wiki/Exp%C3%A9rience_de_la_poup%C3%A9e_Bobo

Boule de démolition. Source : http://data.abuledu.org/URI/50cb1d31-boule-de-demolition

Boule de démolition

Boule de démolition : diagramme pour le calcul de l'énergie potentielle de gravité. L'énergie potentielle gravitationnelle est, comme toutes les formes d'énergies potentielles, définie à une constante additive arbitraire près. Néanmoins, il est d'usage de fixer la valeur de la constante en prenant la valeur de l'énergie potentielle nulle lorsque la masse est infiniment éloignée du centre de gravité du champ auquel elle est soumise. Dans ce cas-là, l'énergie potentielle gravitationnelle est négative. Cela signifie qu'il faut fournir un travail positif (c'est-à-dire dépenser de l'énergie) pour extraire une masse d'un champ gravitationnel. Ceci est une conséquence directe du fait que, dans la nature, les masses sont des quantités positives, qui s'attirent toujours. Ainsi, éloigner une masse d'une distribution arbitraire de masses nécessite de dépenser de l'énergie pour s'opposer à la force attractive entre les différentes masses. Source : Bac pro Bâtiment-métal-alu-verre-matériaux de synthèse en 2006, épreuve Mathématiques et sciences physiques. Copié d'un sujet d'examen national français, considéré dans le domaine public par la jurisprudence (Tribunal de grande instance de Paris, 9 novembre 1988, et Cour d’appel de Paris, 13 juin 1991).

Brouette. Source : http://data.abuledu.org/URI/51de57c7-brouette

Brouette

Brouette. C’est l’outil ergonomique pour le transport de matériaux ou d’outils sur des terrains qui peuvent être accidentés mais nécessairement peu inclinés. Indispensable sur les chantiers, dans les fermes, ou dans les jardins, elle facilite le déplacement de charges qui peuvent être lourdes ou simplement encombrantes. Le principe du levier associé à la position du centre de gravité vers l’aplomb du point d’appui (la roue), lui confère une grande efficacité.

Concorde : transfert de carburant. Source : http://data.abuledu.org/URI/50d5d8f7-concorde-transfert-de-carburant

Concorde : transfert de carburant

Le transfert de carburant : A : décollage, B : croisière, C : retour en subsonique. En plus de l’alimentation des réacteurs, le carburant remplit une autre fonction : il est utilisé pour le centrage. Après le passage du mur du son, l’équilibre aérodynamique est modifié, le centre de poussée recule. Pour compenser cet effet, le centre de gravité de l’appareil est déplacé vers l'arrière. Sur Concorde, la seule masse déplaçable est le carburant. Le transfert du carburant se fait de l’avant vers l’arrière pour le vol supersonique et le contraire pour le retour en subsonique comme sur le Dassault Mirage IV. Trois réservoirs situés dans le fuselage, deux à l’avant et un à l’arrière servaient principalement à cette fonction. Le transfert s’effectue par deux conduits dits « main gallery » entre les trois réservoirs. Pendant ces transferts, le déplacement du carburant est entendu en cabine. À Mach 0,93, transfert vers l’arrière du carburant, aux environs de Mach 1,2, début du transfert vers l’avant. Pendant l'avitaillement, la séquence de chargement du carburant permet de ne pas « poser » l’avion sur la roulette de queue. Une table des volumes des réservoirs permet de connaître la répartition du carburant. Sur cet avion, le carburant est également utilisé pour le refroidissement de l’air de conditionnement de la cabine.

Coulommiers au lait cru. Source : http://data.abuledu.org/URI/501cf9bf-coulommiers-au-lait-cru

Coulommiers au lait cru

La commune de Coulommiers, située dans le département de Seine-et-Marne (région Île-de-France), est connue depuis le Moyen Âge pour sa production de fromages à pâte molle et à croûte fleurie fabriqués à partir de lait cru de vache1. Toutefois, si son nom reste associé à quelques fromages du terroir local singuliers de la famille des fromages de Brie, plus aucune fromagerie n'existe encore à l'heure actuelle sur le territoire même de Coulommiers ni même dans son canton2. Le nom de Coulommiers reste cependant indissociablement lié à l'un des fleurons du patrimoine fromager français, le coulommiers, parfois appelé aussi « petit brie de Coulommiers ». Représentante emblématique de l'authentique terroir gastronomique français, la production fromagère columérienne est de ce fait devenue le centre de gravité tout autant d'importants intérêts économiques - notamment locaux - que de la lutte pour la sauvegarde de ce patrimoine3.

Droite d'Euler. Source : http://data.abuledu.org/URI/518452dd-droite-d-euler

Droite d'Euler

En géométrie euclidienne, dans un triangle non équilatéral, l'orthocentre H, le centre de gravité ou isobarycentre G et le centre du cercle circonscrit \Omega sont alignés et ne sont pas confondus. On appelle droite d'Euler la droite passant par ces trois points. Traduction en français Christophe Catarina.

Droite d'Euler dans un triangle. Source : http://data.abuledu.org/URI/51843031-droite-d-euler-dans-un-triangle

Droite d'Euler dans un triangle

En bleu : les hauteurs ; en orange : les médianes ; en vert : les médiatrices ; en rouge : la droite d'Euler. En géométrie euclidienne, dans un triangle non équilatéral, l'orthocentre H, le centre de gravité ou isobarycentre G et le centre du cercle circonscrit Omega sont alignés et ne sont pas confondus. On appelle droite d'Euler la droite passant par ces trois points.

La visée au billard. Source : http://data.abuledu.org/URI/51d94f9f-la-visee-au-billard

La visée au billard

Billard, bille de choc et bille de visée : Considérons la bille blanche comme bille de choc. Le schéma représente ce que l’on peut voir en plaçant l'œil (directeur) sur l’axe de visée, qui passe par le centre de gravité de la blanche selon un vecteur parallèle à la table. La quantité de bille exprime intrinséquement le rapport du transfert d’énergie lors du choc entre les deux billes. 1) Viser « pleine bille » revient à aligner l’axe sur les 2 centres de gravité. Le transfert de masse lors du choc est entier, la bille de visée héritant de toute la force ; 2) Viser « 3/4 de bille » revient à aligner le centre de la bille de choc avec un point situé à la moitié du rayon de la bille de visée. Elle hérite des 3/4 de la force, 1/4 restant à la blanche ; 3) Viser « 1/2 de bille » aligne l’axe de visée sur la tangente de la bille visée. Le transfert est équivalent ; Viser « 1/4 de bille » revient à aligner le centre de la bille de choc avec un point situé à l’extérieur de la bille de visée, à distance d’un demi rayon. Le rapport est cette fois 1/4 pour la visée, 3/4 pour la bille de choc ; 4) Viser « Finesse » aligne le centre de la bille de choc avec un point à l’extérieur de la bille de visée à distance d’un rayon (en pratique un peu moins afin de garantir le contact). Seule une petite quantité de force est transmise à la bille de visée. Conséquence évidente : Appliquons une force à la bille de choc, lui permettant théoriquement de parcourir un mètre. Pour autant qu'on ne mette aucun effet, en visant pleine bille, la bille de choc s’arrête, et la bille de visée parcourt un mètre. En visant demi bille, les deux billes devraient parcourir chacune 50 centimètres, etc.

Le pendule du lustre de Pise. Source : http://data.abuledu.org/URI/50b008c7-le-pendule-du-lustre-de-pise

Le pendule du lustre de Pise

Plafond et lustre de Pise, Vincenzo Possenti, 1586. Galilée commence par démontrer plusieurs théorèmes sur le centre de gravité de certains solides dans son "Theoremata circa centrum gravitatis solidum" et entreprend en 1586 de reconstituer la balance hydrostatique d'Archimède ou Bilancetta. En même temps, il poursuit ses études sur les oscillations du pendule pesant et invente le pulsomètre. Cet appareil permettait d'aider à la mesure du pouls et fournissait un étalon de temps, qui n'existait pas à l'époque. Il débute aussi ses études sur la chute des corps.

Survirage sur un circuit. Source : http://data.abuledu.org/URI/50d5b688-survirage-sur-un-circuit

Survirage sur un circuit

Trajectoire prévue en vert, survirage en rouge. Le véhicule dérape par les roues arrières, dans les cas extrêmes, la voiture fait un tête-à-queue. Ce phénomène s'explique souvent par une accélération trop violente ou trop précoce en courbe. En effet, la bonne tenue de la trajectoire d'une voiture tient à l'équilibre entre la force centrifuge qui s'applique à elle et la résistance de l'adhérence des pneus. Pour peu que l'accélération soit mal dosée, les pneus arrière ne parviennent pas à passer toute la puissance au sol et se mettent alors à patiner. En situation de glisse (voies glissantes), le train arrière n'a plus l'adhérence nécessaire pour s'opposer à la force centrifuge, il file à la dérive. La voiture part ainsi en dérapage avec le nez orienté vers l'intérieur du virage, elle vire trop par rapport à sa trajectoire initiale : elle « survire ». La prédisposition d'une voiture au survirage dépend en grande partie de la position de son centre de gravité, car c'est sur lui que s'applique la force centrifuge.

Système de coordonnées cartésiennes. Source : http://data.abuledu.org/URI/5096a1bc-systeme-de-coordonnees-cartesiennes

Système de coordonnées cartésiennes

Un système géodésique est, initialement, un repère tridimensionnel défini par : son centre O (choisi à proximité du centre de gravité terrestre) et trois axes orthonormés Ox, Oy et Oz, définis par leur orientation. Ox et Oy se trouvent pratiquement dans le plan équatorial terrestre, et Oz est orienté approximativement suivant l'axe de rotation terrestre. Dans un système géodésique ainsi défini, un point est localisé par ses coordonnées cartésiennes, exprimées par trois valeurs (X, Y, et Z) relatives aux trois axes du repère. Les données spatialisées sont rarement stockées sous cette forme, mais on peut avoir recours à ce système de données cartésiennes pour convertir des données d'un système géodésique à un autre.

Virage à la sellette en parapente. Source : http://data.abuledu.org/URI/50b125cb-virage-a-la-sellette-en-parapente

Virage à la sellette en parapente

Virage à la sellette en parapente. 1=Vol droit : la RFA (résultante des forces aérodynamiques) et le poids sont alignés. Les deux forces sont de même norme mais de sens opposé, le système est en équilibre. 2=Initiation du virage à la sellette : le pilote reporte son poids d'un côté, le centre de gravité se décale de ce côté. Le centre de gravité (point d'application du poids) et le centre de poussée (point d'application de la RFA) ne sont plus alignés verticalement. La RFA exerce donc un moment qui tend à provoquer une rotation du système autour du centre de gravité. 3=Virage stabilisé : le système pilote+parapente a effectué une rotation sur l'axe de roulis. La direction de la RFA s'est réalignée avec le centre de gravité, il n'y a donc plus de moment. La RFA et le poids ne se compensent plus, il y a une force résultante qui provoque une accélération centripète et la mise en virage à rayon constant du parapente.