Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Physique | Dessins et plans | Énergie potentielle | Énergie cinétique | Énergie mécanique | Énergie | Photographie | Énergie mécanique -- Transmission | Cumulonimbus | Démolition | Effets de la gravité | Gravité | Météorologie | Grêle | Orages | Coup de bélier | Tornades | Nuages | Parcs d'attractions | Énergie -- Conservation | ...
Chute libre : trois formes successives d'énergie. Source : http://data.abuledu.org/URI/50cb2352-chute-libre-trois-formes-successives-d-energie

Chute libre : trois formes successives d'énergie

Dans la chute, de l'énergie potentielle devient de l'énergie cinétique. On peut utiliser le principe de conservation de l'énergie mécanique d'un système dans le cas d'une balle élevée à une certaine hauteur du sol. Initialement, elle possède de l'énergie potentielle gravitationnelle. En tombant, accélérée par la force gravitationnelle (une force conservative), son énergie potentielle devient graduellement de l'énergie cinétique. Juste au moment de toucher le sol, la différence d'énergie potentielle gravitationnelle, entre sa position initiale et celle qu'elle occupe, est devenue de l'énergie cinétique. Dans cet exemple, pour considérer que l'énergie est entièrement conservée, il faut négliger la résistance de l'air.

Conservation de l'énergie. Source : http://data.abuledu.org/URI/50cb21ba-conservation-de-l-energie

Conservation de l'énergie

Conservation de l'énergie : à tout moment, la somme de l'énergie potentielle élastique et de l'énergie cinétique est une constante. La conservation de l'énergie est un principe physique selon lequel dans un référentiel inertiel, l'énergie totale d'un système isolé est invariante au cours du temps. Mathématiquement, la variation instantanée d'énergie est nulle. frac{dE}{dt} = 0. En mécanique newtonienne, c'est aussi vrai pour un système influencé par une force conservative. Dans les systèmes simples de la mécanique newtonienne, la somme des énergies cinétiques, K, et des énergies potentielles, U, est une constante. Elle demeure inchangée sous l'action de forces conservatives uniquement.

Montagnes russes. Source : http://data.abuledu.org/URI/5248768b-montagnes-russes

Montagnes russes

Les montagnes russes de "Six Flags over Texas", parc à thème d'Arlington. Le nom fait référence aux six pays qui ont gouverné le Texas : Espagne, France, Mexico, République du Texas, U. S. A. et Confédération des États d'Amérique. Les véhicules des montagnes russes atteignent leur maximum d'énergie cinétique au bas de leur parcours. Lorsqu'ils commencent à monter, l'énergie cinétique est transformée en énergie potentielle. La somme des énergies cinétique et potentielle du système reste constante, si on néglige les pertes (relativement faibles) dues aux frottements.

Puits de potentiel pour le pendule simple. Source : http://data.abuledu.org/URI/50cb2538-puits-de-potentiel-pour-le-pendule-simple

Puits de potentiel pour le pendule simple

Le calcul de l'énergie potentielle puis l'utilisation de l'expression de l'énergie mécanique peut permettre la détermination de l'équation du mouvement du système. Cette méthode est souvent plus judicieuse que l'utilisation du principe fondamental de la dynamique. Méthode énergétique pour la résolution du mouvement du pendule simple : Le système est en équilibre quand son énergie potentielle admet des minimums et des maximums locaux. On peut alors différencier les positions d'équilibre stables et instables selon que l'énergie potentielle est (respectivement) minimale ou maximale. On peut aussi soulever la notion de puits d'énergie potentielle lorsque le graphe de l'énergie potentielle en fonction du paramètre décrivant le mouvement admet un puits. Si le système n'a pas assez d'énergie mécanique pour sortir du puits, il est contraint à rester entre deux positions et peut éventuellement osciller.

Boule de démolition. Source : http://data.abuledu.org/URI/50cb1d31-boule-de-demolition

Boule de démolition

Boule de démolition : diagramme pour le calcul de l'énergie potentielle de gravité. L'énergie potentielle gravitationnelle est, comme toutes les formes d'énergies potentielles, définie à une constante additive arbitraire près. Néanmoins, il est d'usage de fixer la valeur de la constante en prenant la valeur de l'énergie potentielle nulle lorsque la masse est infiniment éloignée du centre de gravité du champ auquel elle est soumise. Dans ce cas-là, l'énergie potentielle gravitationnelle est négative. Cela signifie qu'il faut fournir un travail positif (c'est-à-dire dépenser de l'énergie) pour extraire une masse d'un champ gravitationnel. Ceci est une conséquence directe du fait que, dans la nature, les masses sont des quantités positives, qui s'attirent toujours. Ainsi, éloigner une masse d'une distribution arbitraire de masses nécessite de dépenser de l'énergie pour s'opposer à la force attractive entre les différentes masses. Source : Bac pro Bâtiment-métal-alu-verre-matériaux de synthèse en 2006, épreuve Mathématiques et sciences physiques. Copié d'un sujet d'examen national français, considéré dans le domaine public par la jurisprudence (Tribunal de grande instance de Paris, 9 novembre 1988, et Cour d’appel de Paris, 13 juin 1991).

Cumulonimbus associé à un orage supercellulaire. Source : http://data.abuledu.org/URI/523407fb-cumulonimbus-associe-a-un-orage-supercellulaire

Cumulonimbus associé à un orage supercellulaire

Cumulonimbus associé à un orage supercellulaire, en fin d'après-midi le 3 Avril 2004. L’orage supercellulaire est un type particulier d'orage qui est associé avec des phénomènes violents comme les tornades et la grosse grêle. Il se caractérise par une énergie potentielle de convection disponible élevée (plus de 1 500 J/kg), par un courant ascendant permettant une très large extension verticale (jusqu'à plus de 15 km) et par un changement des vents avec l'altitude dont la direction tourne. Le tout amène un renforcement du mouvement vertical sous le courant ascendant et l'effet de la synchronisation entre le front de rafales descendantes et le courant ascendant est perceptible. Plus l'énergie potentielle de convection disponible sera importante, plus le sommet du nuage d'orage sera élevé et plus intenses seront les phénomènes. Des valeurs extrêmes d'énergie potentielle de convection disponible de 6 000 J/kg ont été mesurées lors des tornades de l'Oklahoma du 3 mai 1999 qui ravagèrent la banlieue sud d'Oklahoma City. En règle générale, les orages supercellulaires se trouvent dans le secteur chaud d'un système dépressionnaire et se déplacent généralement en direction du nord-est, avec le front froid associé à la perturbation.