Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Énergie mécanique -- Transmission | Énergie -- Conservation | Énergie cinétique | Énergie potentielle | Physique | Relativité restreinte (physique) | Énergie | Galilée (1564-1642) | Isaac Newton (1642-1727) | Dix-huitième siècle | Génie mécanique | Relativité (physique) | Énergie mécanique | Machines -- Modèles réduits | Chute libre | Piles électriques | Masse gravitationnelle | Transfert d'énergie | Balles et ballons | ...
Chute libre : trois formes successives d'énergie. Source : http://data.abuledu.org/URI/50cb2352-chute-libre-trois-formes-successives-d-energie

Chute libre : trois formes successives d'énergie

Dans la chute, de l'énergie potentielle devient de l'énergie cinétique. On peut utiliser le principe de conservation de l'énergie mécanique d'un système dans le cas d'une balle élevée à une certaine hauteur du sol. Initialement, elle possède de l'énergie potentielle gravitationnelle. En tombant, accélérée par la force gravitationnelle (une force conservative), son énergie potentielle devient graduellement de l'énergie cinétique. Juste au moment de toucher le sol, la différence d'énergie potentielle gravitationnelle, entre sa position initiale et celle qu'elle occupe, est devenue de l'énergie cinétique. Dans cet exemple, pour considérer que l'énergie est entièrement conservée, il faut négliger la résistance de l'air.

L'énergie des couleurs. Source : http://data.abuledu.org/URI/551f2d17-l-energie-des-couleurs

L'énergie des couleurs

L'énergie des couleurs.

Conservation de l'énergie. Source : http://data.abuledu.org/URI/50cb21ba-conservation-de-l-energie

Conservation de l'énergie

Conservation de l'énergie : à tout moment, la somme de l'énergie potentielle élastique et de l'énergie cinétique est une constante. La conservation de l'énergie est un principe physique selon lequel dans un référentiel inertiel, l'énergie totale d'un système isolé est invariante au cours du temps. Mathématiquement, la variation instantanée d'énergie est nulle. frac{dE}{dt} = 0. En mécanique newtonienne, c'est aussi vrai pour un système influencé par une force conservative. Dans les systèmes simples de la mécanique newtonienne, la somme des énergies cinétiques, K, et des énergies potentielles, U, est une constante. Elle demeure inchangée sous l'action de forces conservatives uniquement.

Machine d'Atwood. Source : http://data.abuledu.org/URI/50c74c39-machine-d-atwood

Machine d'Atwood

Machine d'Atwood (surcharge à gauche, masse à droite) : Atwood (1746-1807) est surtout célèbre chez les élèves de terminales math. élém. des années 1945-1972, par sa « machine » hautement didactique qui permettait de s'entraîner sur la bonne application de la « relation fondamentale de la dynamique » (deuxième loi de Newton) et/ou la conservation de l'énergie mécanique. Tous les grands lycées de France possèdent sans doute encore, dans leurs placards, une machine d'Atwood. Du point de vue expérimental, l'appareil fut l'objet d'un travail soutenu durant au moins un siècle, ce qui permit de tenir compte de beaucoup de correctifs. Néanmoins, pouvoir placer l'appareil dans un grand tube de Newton est resté l'apanage des très grands lycées. La chute libre est difficile à étudier quantitativement, car les temps de parcours sont très courts. Galilée est le premier à chercher comment la ralentir, sans la « dénaturer » : il pensa au plan incliné d'angle α (où intervient seulement g⋅sinα), puis à la succession de plans inclinés. La difficulté pour Galilée restait la mesure du temps… Atwood proposa « sa » machine pour diminuer l'accélération des masses.

Relativité restreinte : collision entre deux particules. Source : http://data.abuledu.org/URI/50b2162e-relativite-restreinte-collision-entre-deux-particules

Relativité restreinte : collision entre deux particules

Conservation du quadrivecteur énergie-impulsion dans une collision entre deux particules. Une collision de deux particules est représenté dans la figure ci-contre. Une particule A de masse 8 (en unités arbitraires) animée d'une vitesse v/c de 15/17 dirigée vers la droite frappe une particule de masse 12 arrivant en sens inverse avec une vitesse v/c de 5/13 (les chiffres ont été choisis pour que les calculs "tombent juste"). Après la collision, A rebondit dans l'autre sens en ayant communiqué à B une partie de sa quantité de mouvement. L'énergie totale, somme des énergies des particules A et B est conservée, de même que la quantité de mouvement totale. Les grandeurs E et p indiquées représentent en réalité (E/c2) et (p/c) et sont exprimées en unités de masse, arbitraires. Avec ces grandeurs on a la relation E 2 = p 2 + m 2. Le facteur γ est toujours défini par γ = [1 - (v/c)2]-1/2.

Relativité restreinte, choc élastique. Source : http://data.abuledu.org/URI/50b222ee-relativite-restreinte-choc-elastique

Relativité restreinte, choc élastique

Collision élastique entre deux particules de même masse. Dans un accélérateur de particules il arrive qu'une particule de très haute énergie heurte une particule au repos et communique à cette dernière une partie de son énergie cinétique. Si les seuls échanges d'énergie concernent précisément cette énergie cinétique (conservation de la quantité de mouvement du système), on dit que le choc est élastique. Les formules traduisant la conservation du quadrivecteur du système formé par ces deux particules permet d'analyser la collision. En mécanique newtonienne la direction des deux particules après un choc forme un angle droit. Ce qui n'est pas le cas dans le cas des chocs entre particules relativistes où leurs directions forment un angle aigu. Ce phénomène est parfaitement visible sur les enregistrements de collisions effectués dans des chambres à bulles. Considérons un électron de masse m et d'énergie très élevée frappant un autre électron intialement au repos. Les vecteurs impulsions des deux particules sont tracés sur la figure ci-contre. Avant le choc l'impulsion de l'électron incident est vec{p}. Après le choc, les impulsions des deux électrons sont vec{p}_1 et vec{p}_2.