Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Photographie | Énergie | Énergie solaire | Énergie hydraulique | ABCD | ABCD-inventions | Sources d'énergie | RyXéo | Énergie des vagues | Physique | Vagues | Relativité restreinte (physique) | Énergie cinétique | Énergie mécanique | Inventions | Peinture | Énergie marémotrice | Voyages autour du monde | Éoliennes | ...
Onde électromagnétique. Source : http://data.abuledu.org/URI/50b346bb-onde-electromagnetique

Onde électromagnétique

Onde électromagnétique : oscillation couplée du champ électrique et du champ magnétique, modèle du dipôle vibrant. Le vecteur \vec{k} indique la direction de propagation de l'onde. On ne peut en fait voir le photon que comme une particule quantique, c’est-à-dire un objet mathématique défini par sa fonction d’onde qui donne la probabilité de présence. Attention à ne pas confondre cette fonction et l’onde électromagnétique classique. Ainsi, l’onde électromagnétique, c’est-à-dire la valeur du champ électrique et du champ magnétique en fonction de l’endroit et du moment (\vec{E}(\vec{x},t) et \vec{B}(\vec{x},t)), a donc deux significations. Fonction macroscopique : lorsque le flux d’énergie est suffisamment important, ce sont les champs électrique et magnétique mesurés par un appareil macroscopique (par exemple antenne réceptrice, un électroscope ou une sonde de Hall) ; Fonction microscopique : elle représente la probabilité de présence des photons, c’est-à-dire la probabilité qu’en un endroit donné il y ait une interaction quantifiée (c’est-à-dire d’une énergie hν déterminée).

Opacité électromagnétique de l'atmosphère. Source : http://data.abuledu.org/URI/50be41a2-opacite-electromagnetique-de-l-atmosphere

Opacité électromagnétique de l'atmosphère

Opacité électromagnétique (ou transmittance) de l'atmosphère en fonction de la longueur d'onde (jusqu'à 1km). L’absorption optique est une autre propriété importante de l'atmosphère. Différentes molécules absorbent différentes longueurs d'onde de radiations. Par exemple, l'O2 et l'O3 absorbent presque toutes les longueurs d'onde inférieures à 300 nanomètres. L'eau (H2O) absorbe la plupart des longueurs d'onde au-dessus de 700 nm, mais cela dépend de la quantité de vapeur d'eau dans l'atmosphère. Quand une molécule absorbe un photon, cela accroît son énergie. Quand les spectres d'absorption des gaz de l'atmosphère sont combinés, il reste des « fenêtres » de faible opacité, autorisant le passage de certaines bandes lumineuses. La fenêtre optique va d'environ 300 nm (ultraviolet-C) jusqu'aux longueurs d'onde que les humains peuvent voir, la lumière visible (communément appelé lumière), à environ 400–700 nm et continue jusqu'aux infrarouges vers environ 1100 nm. Il y a aussi des fenêtres atmosphériques et radios qui transmettent certaines ondes infrarouges et radio sur des longueurs d'onde plus importantes. Par exemple, la fenêtre radio s'étend sur des longueurs d'onde allant de un centimètre à environ onze mètres. Le graphe ci-dessus représente 1-T (exprimé en %) (T:transmittance)

Planet Solar. Source : http://data.abuledu.org/URI/56547197-planet-solar

Planet Solar

Tour du monde d’un bateau fonctionnant à l’énergie solaire : le PlanetSolar. Cliché : Florence8787 recadré par Arnaud Pérat (https://commons.wikimedia.org/wiki/File:Planetsolar-miami-12.jpg?uselang=fr)

Pompe centrifuge. Source : http://data.abuledu.org/URI/50cb3dc4-pompe-centrifuge

Pompe centrifuge

Pompe centrifuge : machine rotative qui pompe un liquide en le forçant au travers d’une roue à aube ou d'une hélice appelée impulseur. C’est le type de pompe industrielle le plus commun. Par l’effet de la rotation de l’impulseur, le fluide pompé est aspiré axialement dans la pompe, puis accéléré radialement, et enfin refoulé tangentiellement. On appelle « corps de pompe » l’enveloppe extérieure de la machine. C’est la partie fixe de la machine ou stator. Le corps est constitué principalement de la « tubulure d’aspiration », de la « volute », et de la « tubulure de refoulement ». La partie mobile ou rotor est formée de l’impulseur (roue à aubes), monté sur un arbre. Le rotor est actionné par une machine d’entraînement qui est le plus souvent un moteur électrique mais peut être également une turbine. Comme l’arbre traverse le plus souvent la volute, il est nécessaire de réaliser à cet endroit un dispositif assurant l’étanchéité globale. Ceci est effectué à l’aide de deux types principaux d’accessoires : le presse-étoupe et la garniture mécanique. On appelle aubes les lamelles grossièrement radiales qui, à l’intérieur de l’impulseur, canalisent le fluide de l’intérieur vers l’extérieur de la volute. On appelle « flasques » les parois de l’impulseur qui enserrent les aubes. (Les roues à deux flasques dites aussi impulseur fermé sont les plus fréquentes. Il existe également des roues sans flasque, et des roues à une seule flasque (impulseur ouvert ou semi-ouvert).

Portrait de James Watt. Source : http://data.abuledu.org/URI/559f8f0d-portrait-de-james-watt

Portrait de James Watt

Portrait de James Watt (1736-1819), ingénieur anglais inventeur de la chambre de condensation séparée pour la machine à vapeur.

Portrait de Nikola Tesla à trente-quatre ans. Source : http://data.abuledu.org/URI/53746718-tesla-nikola

Portrait de Nikola Tesla à trente-quatre ans

Photographie de Nikola Tesla (1856-1943) en 1890, par Napoleon Sarony (1821–1896). Ingénieur électricien et inventeur serbe dans le domaine électronique. Il a travaillé aux États-Unis et a été naturalisé citoyen américain. Il est à l'origine de la première centrale hydraulique à courant alternatif sur les chutes du Niagara. L'unité de mesure pour l'induction magnétique porte son nom (Tesla-T). Source : http://fr.wikipedia.org/wiki/Nikola_Tesla

Principe de fonctionnement d'un laser. Source : http://data.abuledu.org/URI/50b3c088-principe-de-fonctionnement-d-un-laser

Principe de fonctionnement d'un laser

Principe de fonctionnement d'un laser : 1 - milieu excitable 2 - énergie de pompage 3 - miroir totalement réfléchissant 4 - miroir semi-réfléchissant 5 - faisceau laser. Un laser (acronyme de l'anglais « light amplification by stimulated emission of radiation », en français : « amplification de la lumière par émission stimulée de rayonnement ») est un appareil qui produit une lumière spatialement et temporellement cohérente basée sur l'effet laser. Descendant du maser, le laser s'est d'abord appelé maser optique. Une source laser associe un amplificateur optique basé sur l'effet laser à une cavité optique, encore appelée résonateur, généralement constituée de deux miroirs, dont au moins l'un des deux est partiellement réfléchissant, c'est-à-dire qu'une partie de la lumière sort de la cavité et l'autre partie est réinjectée vers l'intérieur de la cavité laser. Avec certaines longues cavités, la lumière laser peut être extrêmement directionnelle. Les caractéristiques géométriques de cet ensemble imposent que le rayonnement émis soit d'une grande pureté spectrale, c’est-à-dire temporellement cohérent.

Production annuelle d'électricité dans le monde. Source : http://data.abuledu.org/URI/5218f83f-production-annuelle-d-electricite-dans-le-monde

Production annuelle d'électricité dans le monde

Évolution de la production annuelle nette d'électricité dans le monde depuis trente ans (1980-2009) : en vert, renouvelable ; en rouge nucléaire ; en marron, d'origine fossile. Pour rattraper le retard pris par rapport aux objectifs de Rio de Janeiro et Kyoto, l'ONU a proposé en 2011 un nouvel objectif pour que 30 % de l'énergie utilisée en 2030 soit produite grâce à des énergies renouvelables comme les éoliennes. Les combustibles fossiles ou minéraux (matériaux fissiles) ne sont pas des sources d'énergie renouvelables, les ressources étant consommées à une vitesse bien supérieure à la vitesse à laquelle celles-ci sont naturellement créées ou disponibles. Source : EIA, U.S. information Source Energy.

Production d'électricité par énergies renouvelables dans le monde. Source : http://data.abuledu.org/URI/5218fa3d-production-d-electricite-par-energies-renouvelables-dans-le-monde

Production d'électricité par énergies renouvelables dans le monde

Évolution de la production annuelle nette d'électricité par des énergies renouvelables dans le monde (1980-2009) : en rose, solaire, marées et vagues ; en vert, éolien ; en rouge, géothermique ; en orange, biomasse et déchêts ; en bleu, hydroélectrique. Source : EIA.

Publicité italienne pour le gas aérogène en 1902. Source : http://data.abuledu.org/URI/57067856-publicite-italienne-pour-le-gas-aerogene-en-1902

Publicité italienne pour le gas aérogène en 1902

Affiche publicitaire pour le gas aérogène d'Antonioli à Milan, Italie : Lumière, Énergie, Chaleur. Source : AAVV. Un secolo di manifesti. Milano, Alberto Maioli Editore - Canova. 1996.

Puits de potentiel pour le pendule simple. Source : http://data.abuledu.org/URI/50cb2538-puits-de-potentiel-pour-le-pendule-simple

Puits de potentiel pour le pendule simple

Le calcul de l'énergie potentielle puis l'utilisation de l'expression de l'énergie mécanique peut permettre la détermination de l'équation du mouvement du système. Cette méthode est souvent plus judicieuse que l'utilisation du principe fondamental de la dynamique. Méthode énergétique pour la résolution du mouvement du pendule simple : Le système est en équilibre quand son énergie potentielle admet des minimums et des maximums locaux. On peut alors différencier les positions d'équilibre stables et instables selon que l'énergie potentielle est (respectivement) minimale ou maximale. On peut aussi soulever la notion de puits d'énergie potentielle lorsque le graphe de l'énergie potentielle en fonction du paramètre décrivant le mouvement admet un puits. Si le système n'a pas assez d'énergie mécanique pour sortir du puits, il est contraint à rester entre deux positions et peut éventuellement osciller.

Réacteur nucléaire canadien CANDU. Source : http://data.abuledu.org/URI/52905a4d-reacteur-nucleaire-canadien-candu

Réacteur nucléaire canadien CANDU

Architecture du réacteur nucléaire à l’uranium naturel à eau lourde conçu au Canada dans les années 1950 et 1960 : réacteur nucléaire à l'uranium naturel (non enrichi) à eau lourde pressurisée développé par Énergie atomique du Canada Limitée. L'acronyme « CANDU » signifie CANada Deuterium Uranium en référence à l'utilisation de l'oxyde de deutérium (eau lourde) et du combustible à l'uranium naturel. 1) Combustible, 2) Calandre, 3) Barres de compensation, 4) Pressuriseur, 5) Générateur de vapeur, 6) Pompe d'eau d'alimentation, 7) Pompe caloporteur, 8.Machine à manutention de combustible, 9) Eau lourde (modérateur), 10) Canal, 11) Vapeur vive, 12) Eau légère pressurisée, 13) Enceinte étanche.

Relativité restreinte : collision entre deux particules. Source : http://data.abuledu.org/URI/50b2162e-relativite-restreinte-collision-entre-deux-particules

Relativité restreinte : collision entre deux particules

Conservation du quadrivecteur énergie-impulsion dans une collision entre deux particules. Une collision de deux particules est représenté dans la figure ci-contre. Une particule A de masse 8 (en unités arbitraires) animée d'une vitesse v/c de 15/17 dirigée vers la droite frappe une particule de masse 12 arrivant en sens inverse avec une vitesse v/c de 5/13 (les chiffres ont été choisis pour que les calculs "tombent juste"). Après la collision, A rebondit dans l'autre sens en ayant communiqué à B une partie de sa quantité de mouvement. L'énergie totale, somme des énergies des particules A et B est conservée, de même que la quantité de mouvement totale. Les grandeurs E et p indiquées représentent en réalité (E/c2) et (p/c) et sont exprimées en unités de masse, arbitraires. Avec ces grandeurs on a la relation E 2 = p 2 + m 2. Le facteur γ est toujours défini par γ = [1 - (v/c)2]-1/2.

Relativité restreinte, choc élastique. Source : http://data.abuledu.org/URI/50b222ee-relativite-restreinte-choc-elastique

Relativité restreinte, choc élastique

Collision élastique entre deux particules de même masse. Dans un accélérateur de particules il arrive qu'une particule de très haute énergie heurte une particule au repos et communique à cette dernière une partie de son énergie cinétique. Si les seuls échanges d'énergie concernent précisément cette énergie cinétique (conservation de la quantité de mouvement du système), on dit que le choc est élastique. Les formules traduisant la conservation du quadrivecteur du système formé par ces deux particules permet d'analyser la collision. En mécanique newtonienne la direction des deux particules après un choc forme un angle droit. Ce qui n'est pas le cas dans le cas des chocs entre particules relativistes où leurs directions forment un angle aigu. Ce phénomène est parfaitement visible sur les enregistrements de collisions effectués dans des chambres à bulles. Considérons un électron de masse m et d'énergie très élevée frappant un autre électron intialement au repos. Les vecteurs impulsions des deux particules sont tracés sur la figure ci-contre. Avant le choc l'impulsion de l'électron incident est vec{p}. Après le choc, les impulsions des deux électrons sont vec{p}_1 et vec{p}_2.

Relativité restreinte, gerbe de rayons cosmiques. Source : http://data.abuledu.org/URI/50b22499-gerbe-png

Relativité restreinte, gerbe de rayons cosmiques

"Gerbe de rayons cosmiques", traduction de "Extended Air Shower": cascade de particules atmosphériques déclenchée par un proton incident. On détecte en astronomie des particules porteuses d'une énergie colossale : les rayons cosmiques. Bien que leur mécanisme de production demeure encore mystérieux, on peut mesurer leur énergie. Les nombres considérables que l'on obtient montrent que leur analyse exige l'emploi des formules de la relativité restreinte. Les rayons cosmiques fournissent donc une illustration idéale de la théorie d'Einstein. On détecte des particules jusqu'à des énergies invraisemblables de l'ordre de 1020 électron-volts, soit cent millions de TeV. Supposons donc qu'un rayon cosmique soit un proton de 1020 eV. Quelle est la vitesse de cette particule ? la vitesse du proton considéré est quasiment égale à la vitesse de la lumière. Elle n'en diffère que par moins de 10-22 (mais ne peut en aucun cas l'égaler). Voyons ce que ces chiffres impliquent pour les facteurs relativistes existant entre le référentiel propre de la particule et le référentiel terrestre. Notre propre Galaxie, de diamètre environ cent mille années-lumière est traversée par la lumière en cent mille ans. Par conséquent pour un observateur terrestre le proton traverse cette Galaxie dans le même temps. L'extraordinaire c'est que dans le référentiel du proton relativiste, le temps correspondant est 1011 fois plus faible, et vaut donc 30 secondes (une année fait 3×107 secondes) ! Notre proton ultra-relativiste et ultra-énergétique traverse notre Galaxie en 30 secondes de son temps propre mais en 100 000 ans de notre temps terrestre. Lorsque ce rayon cosmique heurte un atome d'oxygène ou d'azote de l'atmosphère terrestre à une altitude de l'ordre de 20 à 50 kilomètres au-dessus du sol, une gerbe de particules élémentaires se déclenche contenant en particulier des muons. Une partie d'entre eux se dirigent vers le sol avec une vitesse pratiquement égale à celle de la lumière, de 300 000 kilomètres par seconde dans le référentiel terrestre. Ces particules traversent donc les quelque 30 kilomètres d'atmosphère en 10-4 seconde (ou 100 microsecondes).

Remonter contre le vent. Source : http://data.abuledu.org/URI/50b0c620-segeln-gegen-den-wind-jpg

Remonter contre le vent

Schéma simplifié des forces en jeu quand un bateau remonte au vent : 1) vent, 2) vent repoussé, 3) propulsion. La particule arrive avec l'énergie (1, bleu) et repart avec l'énergie (2, rouge) transmettant sur la voile la quantité d'énergie (3, vert) (Les vecteurs du dessin sont des quantités de mouvement).

Schéma d'éolienne. Source : http://data.abuledu.org/URI/50cb7fcf-schema-d-eolienne

Schéma d'éolienne

Schéma d'éolienne de type aérogénérateur : une éolienne est un dispositif qui transforme l'énergie cinétique du vent en énergie mécanique. Le plus souvent cette énergie est elle-même transformée en énergie électrique. Les éoliennes produisant de l'électricité sont appelées aérogénérateurs. Une éolienne se compose des éléments suivants : un mât, qui permet de placer le rotor à une hauteur suffisante pour permettre son mouvement (nécessaire pour les éoliennes à axe horizontal) ou placer ce rotor à une hauteur lui permettant d'être entraîné par un vent plus fort et régulier qu'au niveau du sol. Le mât abrite généralement une partie des composants électriques et électroniques (modulateur, commande, multiplicateur, générateur, etc.) ; une nacelle montée au sommet du mât, abritant les composants mécaniques, pneumatiques, certains composants électriques et électroniques, nécessaires au fonctionnement de la machine. La nacelle peut tourner pour orienter la machine dans la bonne direction ; un rotor, composé de plusieurs pales (en général trois) et du nez de l'éolienne, fixé à la nacelle. Le rotor est entraîné par l'énergie du vent, il est branché directement ou indirectement (via un multiplicateur de vitesse à engrenages) au système mécanique qui utilisera l'énergie recueillie (pompe, générateur électrique...).

Schéma d'un grain du maïs. Source : http://data.abuledu.org/URI/5288c5d1-schema-d-un-grain-du-mais

Schéma d'un grain du maïs

Schéma d'un grain de maïs : 1-Embryon, 2-Albumen (Amidon farineux), 3-Couche à aleurone (amidon corné ou vitreux), 4-péricarpe, 5-zone de transfert. Le grain de maïs est en fait un caryopse, formé de trois parties d’origines différentes : 1) l’embryon, couramment appelé « germe », situé à la base du grain qui comprend l’embryon proprement dit ou « gemmule » et le scutellum, c’est-à-dire le cotylédon, organe de réserve dans lequel la plantule puise son énergie initiale ; l’embryon est issu de l’œuf formé à la suite de la fusion du noyau d’un spermatozoïde et de l’oosphère, il est diploïde ; 2) l’albumen, tissu de réserve (blanc ou jaune), essentiellement composé de grains d’amidon, sauf la couche périphérique située sous le péricarpe qui contient des grains d’aleurone (incolore, rouge ou violet) riches en protéines ; ce tissu est issu de la fusion du noyau d’un spermatozoïde et des deux noyaux de la cellule centrale, c’est donc un tissu triploïde (à 3n chromosomes) ; 4) l’enveloppe extérieure, fine membrane (incolore, rouge ou violette) translucide et fibreuse, issue du péricarpe de l’ovaire (donc en réalité une partie du fruit et non pas de la graine).

Schéma de calorimètre. Source : http://data.abuledu.org/URI/5218893a-schema-de-calorimetre

Schéma de calorimètre

Schéma de calorimètre : le calorimètre est un appareil destiné à mesurer les échanges de chaleur (énergie calorifique, du latin calor signifiant chaleur).

Schéma de mitochondrie animale. Source : http://data.abuledu.org/URI/50709cff-schema-de-mitochondrie-animale

Schéma de mitochondrie animale

Vue détaillée d'une mitochondrie animale, légende en français de Ethan Gray : Une mitochondrie (du grec mitos, fil et chondros, grain) est un organite à l'intérieur d'une cellule eucaryote, dont la taille est de l'ordre du micromètre. Son rôle physiologique est primordial, puisque c'est dans les mitochondries que l'énergie fournie par les molécules organiques est récupérée sous forme d'ATP (énergie contenue dans la liaison phosphate-phosphate), la source principale d'énergie pour la cellule eucaryote, par le processus d'oxydation phosphorylante. L'ensemble des mitochondries d'une cellule constitue ce que l'on appelle son chondriome.

Schéma de principe d'une chaufferie bois. Source : http://data.abuledu.org/URI/56b7617b-schema-de-principe-d-une-chaufferie-bois

Schéma de principe d'une chaufferie bois

Schéma de principe d'une chaufferie bois.

Séquence protéique. Source : http://data.abuledu.org/URI/5382fa82-sequence-proteique

Séquence protéique

Schéma montrant les quatre principaux niveaux de la structure protéique. La structure des protéines est la composition en acides aminés et la conformation en trois dimensions des protéines. Elle décrit la position relative des différents atomes qui composent une protéine donnée. Les protéines sont des macromolécules de la cellule, dont elles constituent la « boîte à outils », lui permettant de digérer sa nourriture, produire son énergie, de fabriquer ses constituants, de se déplacer, etc. Elles se composent d'un enchaînement linéaire d'acides aminés liés par des liaisons peptidiques. Cet enchaînement possède une organisation tridimensionnelle (ou repliement) qui lui est propre. De la séquence au repliement, il existe 4 niveaux de structuration de la protéine. Source : http://fr.wikipedia.org/wiki/Structure_des_prot%C3%A9ines

Site nucléaire de Brennilis. Source : http://data.abuledu.org/URI/56d5533d-site-nucleaire-de-brennilis

Site nucléaire de Brennilis

Site nucléaire de Brennilis (Finistère).

Solar Impulse. Source : http://data.abuledu.org/URI/565491ac-solar-impulse

Solar Impulse

Le Solar Impulse est un projet d'avion solaire entrepris à l'initiative des Suisses Bertrand Piccard et André Borschberg. Ce projet vise à construire et faire voler un avion à moteurs électriques alimentés uniquement par l'énergie solaire, jusqu’à effectuer un tour du monde. Infographie + montage sur photo : Arnaud Pérat. Auteur de la Photo d'arrière plan : Hansueli Krapf (https://commons.wikimedia.org/wiki/File:2011-11-17_13-35-27_Switzerland_Canton_de_Vaud_Pr%C3%A9verenges.jpg).

Sources d'énergie. Source : http://data.abuledu.org/URI/50cb92bd-sources-d-energie

Sources d'énergie

Sources d'énergie : nucléaire (par fusion et fission), profondeurs de la Terre (géothermie), rayonnement solaire passé, rayonnement solaire présent (précipitations, vent, rayonnement direct, photosynthèse), gravitation lune et soleil.

Spectre d'irradiance solaire. Source : http://data.abuledu.org/URI/5218facb-spectre-d-irradiance-solaire

Spectre d'irradiance solaire

Le Soleil émet un rayonnement électromagnétique dans lequel on trouve notamment les rayons cosmiques, gamma, X, la lumière visible, l’infrarouge, les micro-ondes et les ondes radios en fonction de la fréquence d’émission. Tous ces types de rayonnement électromagnétique émettent de l’énergie. Le niveau d’irradiance (le flux énergétique) arrivant à la surface de la Terre dépend de la longueur d’onde du rayonnement solaire.

Station photovoltaïque de Boedo de Castrejón. Source : http://data.abuledu.org/URI/587f2514-station-photovoltaique-de-boedo-de-castrej-n

Station photovoltaïque de Boedo de Castrejón

Station photovoltaïque de Boedo de Castrejón à Palencia, Castille et León, en Espagne.

Statue équestre à Londres. Source : http://data.abuledu.org/URI/52fb4f37-statue-equestre-a-londres

Statue équestre à Londres

Statue équestre baptisée "Energie physique", Hyde Park dans la City de Westminster, à Londres, par George Frederic Watts (1817-1904).

Structure en quarks du pion. Source : http://data.abuledu.org/URI/50be6397-structure-en-quarks-du-pion

Structure en quarks du pion

Schéma de la composition d'un pion π+ en termes de quarks (un quark up et un antidown). Un pion ou méson pi est une des trois particules : π+, π0 ou π−. Ce sont les particules les plus légères de la famille des mésons. Elles jouent un rôle important dans l'explication des propriétés à basse énergie de la force nucléaire forte ; notamment, la cohésion du noyau atomique est assurée par l'échange de pions entre les nucléons (protons et neutrons).

Symboles d'énergie. Source : http://data.abuledu.org/URI/50cb2035-symboles-d-energie

Symboles d'énergie

Symboles d'énergie en science, industrie, etc : lampe allumée, radiateur et soleil.

Télécommande de TV sans pile. Source : http://data.abuledu.org/URI/50a94152-telecommande-de-tv-sans-pile

Télécommande de TV sans pile

Télécommande de TV sans pile, réalisée par Arveni sas pour Philips en 2011 : les piézoélectriques sont au cœur d'applications récentes visant à récupérer l'énergie présente dans notre environnement sous différentes formes ou effectuées par des mouvements quotidiens. Les premiers prototypes, dits microgénérateurs, sont apparus en 2006 (cf démonstrateur de sonnette de maison sans fil et sans pile de la société française Arveni s.a.s.). Ils récupèrent par exemple l'énergie mécanique fournie par la pression du doigt sur un bouton. L'électricité ainsi récupérée sert à alimenter un circuit radio, qui émet un message vers le récepteur. Il existe aussi des applications industrielles, comme les réseaux de capteurs sans fil où la source d'énergie est la vibration d'une machine par exemple. Les applications sont la maintenance préventive, la surveillance de santé des structures, ou le contrôle de processus.

Tour du marégraphe de la Rance. Source : http://data.abuledu.org/URI/50bf69e9-tour-du-maregraphe-de-la-rance

Tour du marégraphe de la Rance

Tour du marégraphe de la Rance (Saint Malo, France), constuit en 1844, et aujourd'hui utilisé par l'usine marémotrice de la Rance.

Travail d'une force. Source : http://data.abuledu.org/URI/50c45ce2-travail-d-une-force

Travail d'une force

Le travail d'une force est l'énergie fournie par cette force lorsque son point d'application se déplace (l'objet subissant la force se déplace ou se déforme). Il est responsable de la variation de l'énergie cinétique du système qui subit cette force. Si par exemple on pousse une voiture, le travail de la poussée est l'énergie produite par cette poussée. Considérons une force vec{F} constante s'appliquant sur un objet se déplaçant sur une trajectoire rectiligne (Il n'y a pas d'autres forces s'exerçant sur l'objet). Un certain nombre de cas particuliers permettent d'illustrer la notion de travail d'une force : 1) Si la force vec{F} est parallèle au déplacement vec{u} et orientée dans le même sens, le travail W = vec{F}cdotvec{u} fourni par la force est positif : d'après le théorème de l’énergie cinétique, la force a augmenté l'énergie cinétique du système, celui-ci se déplace donc plus rapidement. Une telle force est parfois dénommée force motrice. 2) Si la force vec{F} est parallèle au déplacement vec{u} mais orientée dans le sens opposé, le travail W = vec{F}cdotvec{u}, fourni par la force est négatif : d'après le théorème de l’énergie cinétique, la force a diminué l'énergie cinétique du système, celui-ci se déplace donc plus lentement. On appelle parfois une telle force, une force résistante. 3)Si la force vec{F} est perpendiculaire au déplacement vec{u}, le travail de la force est nul W = 0 : la force n'a pas modifié l'énergie cinétique du système. On peut dire plus simplement que si la force vec{F} est perpendiculaire au déplacement, elle ne modifie pas le déplacement.

Turboréacteur. Source : http://data.abuledu.org/URI/50c83ec3-turboreacteur

Turboréacteur

Schéma de turboréacteur d'avion typique (simple flux, simple corps). L'air est comprimé par les pales en entrant dans le réacteur, puis est mélangé avec le carburant qui brûle dans la chambre de combustion. Les gaz d'échappement donnent une forte poussée en avant et font tourner les turbines qui actionnent les pales de compression. Un turboréacteur fonctionne sur le principe d'action-réaction. La variation de vitesse de l'air entre l'entrée et la sortie du réacteur crée une quantité de mouvement (dénommée poussée) vers l'arrière du moteur qui, par réaction, — d'où le terme de moteur à réaction — engendre le déplacement du moteur, donc du véhicule sur lequel il est fixé, vers l'avant. Le turboréacteur fonctionne sur le principe des turbines à gaz. À l'admission, l'air est aspiré par la soufflante (le cas échéant) puis comprimé via un compresseur (dans tous les cas). Du kérosène est ensuite injecté puis mélangé avec l'air au niveau de la chambre de combustion puis enflammé, ce qui permet de fortement dilater les gaz. Ces derniers s'échappent du turboréacteur par la tuyère qui, en raison de sa section convergente, augmente la vitesse de l'air (suivant l'effet venturi) (l'écoulement étant maintenu subsonique au sein du réacteur). L'air passe au préalable par une turbine permettant d'entraîner le compresseur et les accessoires nécessaires au fonctionnement du réacteur ; le mouvement est auto-entretenu tant qu'il y a injection de carburant. En simplifiant, l'énergie de pression engendrée au sein du réacteur sera transformée en énergie cinétique en sortie, ce qui engendrera une forte poussée. À l'image des moteurs automobile, le turboréacteur réalise ainsi un cycle continu à quatre temps — admission, compression, combustion et détente/échappement — théoriquement décrit par le cycle de Brayton. Ce cycle est constitué d'une compression adiabatique réversible, d'une combustion isobare irréversible (le réacteur étant considéré comme un système ouvert), d'une détente adiabatique réversible et d'un refroidissement isobare réversible.

Types psychologiques de Jung. Source : http://data.abuledu.org/URI/529e5d61-types-psychologiques-de-jung

Types psychologiques de Jung

Types psychologiques de Jung : le sujet ; la sentation, le sentiment, la pensée et l'intuition. Les « quatre fonctions » de la personnalité selon la typologie jungienne. Source : Types psychologiques, 1921. Jung y sur-ordonne deux « attitudes » qui déterminent l'utilisation faite par le psychisme du sujet de sa libido (énergie psychique). Ainsi, l'extraversion est le mouvement de la libido vers l'extérieur, qui se réfère à l'objet alors que l'introversion est le mouvement de la libido tournée vers l'intérieur et qui se tourne vers le sujet.

Une fourmi au microscope électronique. Source : http://data.abuledu.org/URI/50b35443-une-fourmi-au-microscope-electronique

Une fourmi au microscope électronique

Image partielle d'une fourmi au microscope électronique à balayage. À la différence du MET, où le faisceau d'électrons à haute tension porte l'image de l'échantillon, le faisceau d'électrons du microscope électronique à balayage MEB (ou SEM en anglais) ne peut donner à aucun moment une image complète de l'échantillon. Le SEM produit des images par sondage de l'échantillon avec un faisceau d'électrons qui, concentré, est analysé sur une zone rectangulaire de l'échantillon ("raster scanning"). Sur chaque point sur l'échantillon le faisceau d'électrons incident perd de l'énergie. Cette perte d'énergie est convertie en autres formes, comme la chaleur, l'émission d'électrons secondaires de basse énergie, l'émission de lumière (cathodoluminescence) ou l'émission de rayons X . L'afficheur du SEM représente l'intensité variable de l'un de ces signaux dans l'image, dans une position correspondant à la position du faisceau sur l'échantillon lorsque le signal a été généré. Dans l'image de la fourmi de droite, l'image a été construite à partir des signaux produits par un détecteur d'électrons secondaires, le mode d'imagerie conventionnelle normal de la plupart des SEM. En règle générale, la résolution de l'image d'un SEM est d'environ un ordre de grandeur plus faible que celle d'un MET. Toutefois, parce que l'image du SEM repose sur les processus de surface plutôt que sur la transmission, il est en mesure de livrer des images d'objets de plusieurs centimètres avec une grande profondeur de champ, dépendant de la conception et du réglage de l'instrument, et il peut ainsi produire des images qui sont une bonne représentation en trois dimensions de la structure de l'échantillon.

Usine hydro-électrique de Licq-Atherey. Source : http://data.abuledu.org/URI/56b75900-usine-hydro-electrique-de-licq-atherey

Usine hydro-électrique de Licq-Atherey

La chute d'eau et la petite usine hydro-électrique de Licq-Athérey sur la rivière "Le Saison" (Pyrénées-Atlantiques).

Vagues de tempête. Source : http://data.abuledu.org/URI/58b2d177-vagues-de-tempete

Vagues de tempête

Vagues de tempête, par Gustave Courbet, 1869. Musée d'art de Philadelphie.

Vagues se brisant au rivage. Source : http://data.abuledu.org/URI/52b6db5e-vagues-se-brisant-au-rivage

Vagues se brisant au rivage

Vagues se brisant au rivage. Illustration par Yan Dargent (1824-1899), in Jean Rambosson, Histoire des météores et des grands phénomènes de la nature, p. 287, Firmin-Didot, 1883 (wikisource).

Vecteurs au billard. Source : http://data.abuledu.org/URI/51d9547d-vecteurs-au-billard

Vecteurs au billard

Vecteurs au billard : exemple d'une collision dans un jeu de billard. Les collisions représentent une grande partie du jeu de billard. Ces collisions sont élastiques, puisque l’énergie cinétique est généralement conservée au cours des collisions. Au cours des collisions dans les jeux de billard, la quantité de mouvement est conservée.

Volume d'univers. Source : http://data.abuledu.org/URI/52c43bcc-volume-d-univers

Volume d'univers

Illustration schématique d'une partie du volume d'univers d'une 3-brane. Cette image est une représentation dans le temps. En physique théorique, le volume d'univers d'un objet est sa trajectoire unique dans l'espace-temps. Au même titre que la ligne d'univers d'une particule ponctuelle ou la feuille d'univers engendrée par une corde, le volume d'univers d'un brane constitue le volume quadridimensionnel (3 dimensions spatiales et 1 dimension temporelle) engendré par le mouvement de cette brane dans l'espace-temps. Il s'agit donc de la généralisation des lignes d'univers aux branes. En théorie des cordes, une brane, ou p-brane, est un objet étendu, dynamique, possédant une énergie sous forme de tension sur son volume d'univers, qui est une charge source pour certaines interactions de la même façon qu'une particule chargée, telle l'électron par exemple, est une source pour l'interaction électromagnétique. Dans le langage des branes, une particule chargée est appelée une 0-brane. Les branes ont été popularisées par certains modèles cosmologiques dits branaires dans lesquels l'univers observable constituerait le volume interne d'une brane (une 3-brane pour être précis) vivant dans un espace-temps ayant des dimensions supplémentaires.