Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Ondes | Photographie | Physique | Ondes -- Propagation | Lumière -- Propagation | Lumière | Ondes de choc | Ondes électromagnétiques | Lumière, Théorie ondulatoire de la | Aérodynamique | Aérodynamique supersonique | Rayonnement solaire | Dix-neuvième siècle | Lumière -- Absorption | Doppler-Fizeau, Effet | Transducteurs électroacoustiques | Photons | Transducteurs | Ondes électromagnétiques -- Propagation | ...
Le spectre électromagnétique. Source : http://data.abuledu.org/URI/50a81854-le-spectre-electromagnetique

Le spectre électromagnétique

Proposition d'illustration du spectre électromagnétique, le spectre visible correspond aux couleurs en bas du schéma. La lumière visible, appelée aussi spectre visible ou spectre optique est la partie du spectre électromagnétique qui est visible pour l'œil humain. Il n'y a aucune limite exacte au spectre visible : l'œil adapté à la lumière possède généralement une sensibilité maximale à la lumière de longueur d'onde d'environ 550 nm, ce qui correspond à une couleur jaune-verte. Généralement, on considère que la réponse de l'œil couvre les longueurs d'ondes de 380 nm à 780 nm bien qu'une gamme de 400 nm à 700 nm soit plus commune. Les fréquences correspondantes vont de 350 à 750 THz (10¹² Hz). Cette gamme de longueur d'onde est importante pour le monde vivant car des longueurs d'ondes plus courtes que 380 nm endommageraient la structure des molécules organiques tandis que celles plus longues que 720 nm seraient absorbées par l'eau, constituant abondant du vivant. Ces extrêmes correspondent respectivement aux couleurs violet et rouge. Cependant, l'œil peut avoir une certaine réponse visuelle dans des gammes de longueurs d'onde encore plus larges. Les longueurs d'onde dans la gamme visible pour l'œil occupent la majeure partie de la fenêtre optique, une gamme des longueurs d'onde qui sont facilement transmises par l'atmosphère de la Terre.

Les étapes du Mur du son. Source : http://data.abuledu.org/URI/52c8698a-les-etapes-du-mur-du-son

Les étapes du Mur du son

Les étapes du mur du son : 1) subsonique, 2) Mach 1, 3) supersonique, 4) onde de choc.

Longueur d'onde. Source : http://data.abuledu.org/URI/50a8f145-longueur-d-onde

Longueur d'onde

Représentation de la longueur d’onde d’une fonction sinus. La longueur d’onde est une grandeur physique, homogène à une longueur, utilisée pour caractériser des phénomènes périodiques. Une onde est un phénomène physique se propageant et qui se reproduit identique à lui-même un peu plus tard dans le temps et un peu plus loin dans l’espace. On peut alors définir la longueur d’onde comme étant la plus courte distance séparant deux points de l’onde strictement identiques à un instant donné. On la dénote communément par la lettre grecque λ (lambda). Notion inventée par Fesnel qui réalisa de nombreuses expériences sur les interférences lumineuses, indépendamment de celles de Thomas Young, pour lesquelles il forge la notion de longueur d'onde. Il calcule les intégrales dites de Fresnel.

Marégraphe. Source : http://data.abuledu.org/URI/50bf68fc-maregraphe

Marégraphe

Marégraphe avant son immersion dans un port en 2004, Institut de Physique du Globe de Paris (IPGP). Un marégraphe est un instrument permettant de mesurer le niveau de la mer à un endroit donné. Le principe du marégraphe est simple, situé dans un emplacement précisément identifié, le marégraphe enregistre le niveau de la mer au cours du temps. La complexité du marégraphe ne réside donc pas dans son principe mais dans la technologie mise en jeu, pour l'étalonnage des mesures, l'enregistrement… Les marégraphes numériques côtiers fonctionnent par un principe d'émission-réception d'ondes acoustiques (40-50 kHz) ou radar (> 1 GHz)). Un transducteur est placé au dessus de la surface de l'eau, il émet une impulsion et capte le signal réfléchi. Le temps écoulé entre l'émission et la réception du signal est traduit en hauteur de la colonne d'eau. Le transducteur effectue plusieurs mesures périodiquement puis les mesures sont moyennées afin de limiter les effets de la houle ou du clapot. Le réseau d'observation des côtes françaises est principalement constitué de ce type de marégraphe.

Microphone de contact piézoélectrique. Source : http://data.abuledu.org/URI/50a93fd1-microphone-de-contact-piezoelectrique

Microphone de contact piézoélectrique

Microphone de contact piézoélectrique sur une guitare classique. Les matériaux piézoélectriques permettent de convertir une onde acoustique en signal électrique et inversement. Ils constituent le cœur des transducteurs acoustiques utilisés pour émettre ou détecter des ondes acoustiques dans toutes les gammes de fréquences. On les retrouve dans plusieurs domaines. Dans les gammes de fréquences audibles, on réalise des microphones (et en particulier des microphones de contact) et des haut-parleurs, notamment dans les téléphones portables. Dans les sonars, utilisés dans la marine, mais aussi dans l'automobile, pour la détection d'obstacles. En médecine, on en utilise pour la réalisation d'échographies, qui nécessitent l'émission et la détection d'ondes ultrasonores, ainsi que pour certaines thérapies par ultrasons.

Mur du son. Source : http://data.abuledu.org/URI/52c86a65-mur-du-son

Mur du son

Comparison entre les ondes de choc d'un avion subsonique et supersonique (Mach 1).

Onde électromagnétique. Source : http://data.abuledu.org/URI/50a8d109-onde-electromagnetique

Onde électromagnétique

Représentation d'une onde électromagnétique : oscillation couplée du champ électrique et du champ magnétique, modèle du dipôle vibrant. Une onde électromagnétique monochromatique peut se modéliser par un dipôle électrostatique vibrant, ce modèle reflétant convenablement, par exemple, les oscillations du nuage électronique d'un atome intervenant dans la diffusion Rayleigh (modèle de l'électron élastiquement lié).

Onde électromagnétique. Source : http://data.abuledu.org/URI/50b346bb-onde-electromagnetique

Onde électromagnétique

Onde électromagnétique : oscillation couplée du champ électrique et du champ magnétique, modèle du dipôle vibrant. Le vecteur \vec{k} indique la direction de propagation de l'onde. On ne peut en fait voir le photon que comme une particule quantique, c’est-à-dire un objet mathématique défini par sa fonction d’onde qui donne la probabilité de présence. Attention à ne pas confondre cette fonction et l’onde électromagnétique classique. Ainsi, l’onde électromagnétique, c’est-à-dire la valeur du champ électrique et du champ magnétique en fonction de l’endroit et du moment (\vec{E}(\vec{x},t) et \vec{B}(\vec{x},t)), a donc deux significations. Fonction macroscopique : lorsque le flux d’énergie est suffisamment important, ce sont les champs électrique et magnétique mesurés par un appareil macroscopique (par exemple antenne réceptrice, un électroscope ou une sonde de Hall) ; Fonction microscopique : elle représente la probabilité de présence des photons, c’est-à-dire la probabilité qu’en un endroit donné il y ait une interaction quantifiée (c’est-à-dire d’une énergie hν déterminée).

Onde lumineuse surfée par une fourmi. Source : http://data.abuledu.org/URI/50a8f34a-onde-lumineuse-surfee-par-une-fourmi

Onde lumineuse surfée par une fourmi

Onde lumineuse surfée par une fourmi.

Onde sismique. Source : http://data.abuledu.org/URI/509f668e-onde-sismique

Onde sismique

Schéma de propagation des ondes sismiques de type P.

Ondes de choc du mur du son. Source : http://data.abuledu.org/URI/52c86b02-ondes-de-choc-du-mur-du-son

Ondes de choc du mur du son

Chronologie des ondes de choc du mur du son.

Opacité électromagnétique de l'atmosphère. Source : http://data.abuledu.org/URI/50be41a2-opacite-electromagnetique-de-l-atmosphere

Opacité électromagnétique de l'atmosphère

Opacité électromagnétique (ou transmittance) de l'atmosphère en fonction de la longueur d'onde (jusqu'à 1km). L’absorption optique est une autre propriété importante de l'atmosphère. Différentes molécules absorbent différentes longueurs d'onde de radiations. Par exemple, l'O2 et l'O3 absorbent presque toutes les longueurs d'onde inférieures à 300 nanomètres. L'eau (H2O) absorbe la plupart des longueurs d'onde au-dessus de 700 nm, mais cela dépend de la quantité de vapeur d'eau dans l'atmosphère. Quand une molécule absorbe un photon, cela accroît son énergie. Quand les spectres d'absorption des gaz de l'atmosphère sont combinés, il reste des « fenêtres » de faible opacité, autorisant le passage de certaines bandes lumineuses. La fenêtre optique va d'environ 300 nm (ultraviolet-C) jusqu'aux longueurs d'onde que les humains peuvent voir, la lumière visible (communément appelé lumière), à environ 400–700 nm et continue jusqu'aux infrarouges vers environ 1100 nm. Il y a aussi des fenêtres atmosphériques et radios qui transmettent certaines ondes infrarouges et radio sur des longueurs d'onde plus importantes. Par exemple, la fenêtre radio s'étend sur des longueurs d'onde allant de un centimètre à environ onze mètres. Le graphe ci-dessus représente 1-T (exprimé en %) (T:transmittance)

Portrait d'Hippolyte Fizeau. Source : http://data.abuledu.org/URI/50a78f29-portrait-d-hippolyte-fizeau

Portrait d'Hippolyte Fizeau

Armand Hippolyte Louis Fizeau (1819-1896), est un physicien, astronome français qui travailla notamment sur la lumière. En 1845, il réalise une première photographie nette du Soleil. En 1848, il découvre le décalage de fréquence d'une onde lorsque la source et le récepteur sont en mouvement l'un par rapport à l'autre (effet Doppler-Fizeau). C'est ainsi qu'il prédit le décalage vers le rouge des ondes lumineuses.

Portrait de Buys-Ballot. Source : http://data.abuledu.org/URI/50a76c93-portrait-de-buys-ballot

Portrait de Buys-Ballot

C.H.D. Buys Ballot (1817-1890), savant néermandais surtout connu pour ses recherches en météorologie, en particulier sur l'explication du sens de la circulation autour des dépressions et des anticyclones. Ses recherches ne se limitent pas à la météorologie. En 1845, Buys Ballot engage un groupe de musiciens pour jouer une note bien précise sur le train Utrecht-Amsterdam. Il enregistre ensuite la différence entre cette fréquence et celle perçue le long de la ligne par un observateur pour confirmer les équations de Christian Doppler concernant la propagation des ondes sonores (Effet Doppler-Fizeau).

Portrait de Joseph Fourier. Source : http://data.abuledu.org/URI/50a812c8-portrait-de-joseph-fourier

Portrait de Joseph Fourier

Portrait de Joseph Fourier (1768-1830), mathématicien et physicien français, connu pour ses travaux sur la décomposition de fonctions périodiques en séries trigonométriques convergentes appelées "séries de Fourier" et leur application au problème de la propagation de la chaleur. Il intègre l'École normale supérieure à 26 ans, où il a entre autres comme professeurs Joseph-Louis Lagrange, Gaspard Monge et Pierre-Simon de Laplace, auquel il succède à la chaire à Polytechnique en 1797. Il participe à la Révolution, manquant de peu de se faire guillotiner durant la Terreur, sauvé de justesse par la chute de Robespierre. En 1798, il est désigné pour faire partie de la campagne d'Égypte et quitte Toulon en mai. Il occupe un haut poste de diplomate et devient secrétaire de l'Institut d'Égypte dont il anime la vie scientifique. À son retour en France en 1802, Napoléon le nomme préfet de l'Isère le 12 février. Il crée en 1810 l'Université Royale de Grenoble dont il devient le recteur, et y remarque Jean-François Champollion.

Principe de la sismique-réflexion à terre. Source : http://data.abuledu.org/URI/50a2a3f1-principe-de-la-sismique-reflexion-a-terre

Principe de la sismique-réflexion à terre

Principe de sismique réflexion sur terre : 1=vibrations provoquées dans le sous-sol, 2=propagation des ondes émises dans la première couche, 3= réflexion d'une partie des ondes (écho à l'arrivée à la couche géologique concernée), 4=ondes captées par des géophones. La sismique réflexion utilise la réflexion des ondes sur les interfaces entre plusieurs niveaux géologiques. On utilise des canons à air comprimé en mer, des camions vibreurs ou de la dynamite à terre pour créer des ondes. Les ondes émises se propagent et sont en partie réfléchies à chaque limite de couche. Elles sont reçues par des capteurs (hydrophones en mer ou géophones sur terre). La sismique réflexion peut être monotrace ou multitraces. Dans ce dernier cas, en plus d'augmenter le rapport signal sur bruit, il est possible de calculer les vitesses des milieux traversés. Cette information permet ensuite de convertir les données en profondeur.

Principe de réflexion angulaire. Source : http://data.abuledu.org/URI/50a2a7e0-principe-de-reflexion-angulaire

Principe de réflexion angulaire

Principe de réflexion angulaire par analogie avec un miroir. La réflexion est le brusque changement de direction d'une onde à l'interface de deux milieux. Après réflexion l'onde reste dans son milieu de propagation initial. Ce phénomène se rencontre pour différents types d'ondes : réflexion optique ou réflexion des ondes électromagnétiques ; réflexion acoustique ou réflexion des ondes mécaniques ; réflexion électrique.

Quatre types de frises. Source : http://data.abuledu.org/URI/52c86310-quatre-types-de-frises

Quatre types de frises

Quatre types de frises (ondes ayant la même fréquence et la même phase).

Radar à pénétration de sol. Source : http://data.abuledu.org/URI/54d8e914-radar-a-penetration-de-sol

Radar à pénétration de sol

Un radar à pénétration de sol (RPS), appelé aussi radar géologique ou géoradar, est un appareil géophysique utilisant le principe d'un radar que l'on pointe vers le sol pour en étudier la composition et la structure. En général, on utilise la bande des micro-ondes et des ondes radio (VHF/UHF). On peut sonder ainsi une variété de terrains, incluant les calottes glaciaires et les étendues d'eau. Source : http://fr.wikipedia.org/wiki/Radar_%C3%A0_p%C3%A9n%C3%A9tration_de_sol

Radiotriangulation. Source : http://data.abuledu.org/URI/518b7df2-radiotriangulation

Radiotriangulation

Principe de fonctionnement de la radiotriangulation. Dans le cas d'ondes électromagnétiques (par exemple des ondes radio), la position peut se déterminer avec une antenne directionnelle (c'est-à-dire une antenne ne captant que les ondes venant d'une direction donnée) ; l'orientation pour laquelle le signal est le plus fort donne la direction de l'émetteur, il suffit alors de faire plusieurs relevés pour avoir la position de l'émetteur (radiogoniométrie). Cette méthode était par exemple utilisée durant l'occupation allemande de la France pour détecter les émetteurs radio clandestins.

Rayons du crépuscule. Source : http://data.abuledu.org/URI/50be3dfe-rayons-du-crepuscule

Rayons du crépuscule

Rayons du crépuscule : les différentes couleurs sont dues à la dispersion de la lumière produite par l'atmosphère. Quand la lumière traverse l'atmosphère, les photons interagissent avec elle à travers la diffusion des ondes. Si la lumière n'interagit pas avec l'atmosphère, c'est la radiation directe et cela correspond au fait de regarder directement le soleil. Les radiations indirectes concernent la lumière qui est diffusée dans l'atmosphère. Par exemple, lors d'un jour couvert quand les ombres ne sont pas visibles il n'y a pas de radiations directes pour la projeter, la lumière a été diffusée. Un autre exemple, dû à un phénomène appelé la diffusion Rayleigh, les longueurs d'onde les plus courtes (bleu) se diffusent plus aisément que les longueurs d'onde les plus longues (rouge). C'est pourquoi le ciel parait bleu car la lumière bleue est diffusée. C'est aussi la raison pour laquelle les couchers de soleil sont rouges. Parce que le soleil est proche de l'horizon, les rayons solaires traversent plus d'atmosphère que la normale avant d'atteindre l'œil par conséquent toute la lumière bleue a été diffusée, ne laissant que le rouge lors du soleil couchant.

Réfraction. Source : http://data.abuledu.org/URI/50a59f8c-refraction

Réfraction

Principe de réfraction d'onde selon Huygens-Fresnel (Augustin Jean Fresnel, né le 10 mai 1788 à Broglie et mort le 14 juillet 1827 à Ville-d'Avray, est un physicien français fondateur de l’optique moderne ; il proposa une explication de tous les phénomènes optiques dans le cadre de la théorie ondulatoire de la lumière). Le principe de Huygens-Fresnel est un principe utilisé en optique : il permet entre autres de calculer l'intensité dans les phénomènes de diffraction et d'interférence. Il consiste à considérer chaque point de l'espace indépendamment. Si un point M reçoit une onde d'amplitude E(M, t), alors on peut considérer qu'il réémet une onde sphérique de même fréquence, même amplitude et même phase. Au lieu de considérer que l'onde progresse de manière continue, on décompose sa progression en imaginant qu'elle progresse de proche en proche. Formulé par Fresnel en 1815, ce principe reprend la base du modèle ondulatoire développé par Huygens (1690). Soit une surface ∑ et une source lumineuse S. On découpe ∑ en surfaces élémentaires d∑ centrées autour d'un point P. Chaque point P de ∑ atteint par la lumière émise par la source S se comporte comme une source secondaire fictive émettant une ondelette sphérique.

Ressort à spirales. Source : http://data.abuledu.org/URI/50c6ec46-ressort-a-spirales-

Ressort à spirales

Slinky en plastique aux couleurs de l'arc-en-ciel. Le slinky est un petit jouet qui peut descendre les marches d'un escalier (ou d'un quelconque plan incliné théoriquement) en s'étirant d'une marche à l'autre. Il utilise donc la force de la gravité pour se propulser. Le slinky en métal est beaucoup plus efficace que le slinky en plastique puisqu'il garde toujours sa forme initiale après avoir descendu l'escalier, tandis que le slinky en plastique se plie et change de forme avec les utilisations, ce qui le rend inutilisable. Des radioamateurs utilisent des slinky pour fabriquer des antennes afin de communiquer sur les ondes courtes car la forme bobinée permet de diminuer sensiblement la longueur des antennes, ce qui est apprécié lorsque l'espace disponible est limité (greniers, etc.).

Schéma d'un Chloroplaste. Source : http://data.abuledu.org/URI/5214c92a-schema-d-un-chloroplaste

Schéma d'un Chloroplaste

Schème de chloroplaste d'une plante supérieure. Les chloroplastes sont des organites présents dans le cytoplasme des cellules eucaryotes photosynthètique (plantes, algues). Ils sont sensibles aux expositions des différentes ondes du spectre lumineux. Ils jouent un rôle essentiel dans le fonctionnement d'une cellule végétale car ils permettent de capter la lumière à l'origine de la photosynthèse. Par l'intermédiaire de la chlorophylle qu'ils possèdent et de leurs ultrastructures, ces organites sont capables de transférer l'énergie véhiculée par les photons à des molécules chimiques (eau). Les chloroplastes jouent un rôle important dans le cycle du carbone, par la transformation du carbone atmosphérique en carbone organique. Les chloroplastes appartiennent à une famille d'organites appelés les plastes ; ceux-ci sont le fruit de l'endosymbiose d'une cyanobactérie, il y a environ 1,5 milliard d'années.

Source sonore omni-directionnelle dans une chambre sourde. Source : http://data.abuledu.org/URI/52c40dd7-source-sonore-omni-directionnelle-dans-une-chambre-sourde

Source sonore omni-directionnelle dans une chambre sourde

Source sonore artificielle omni-directionnelle dans une chambre acoustique anéchoïque (sourde), Université Technique de Prague.

Spectre d'irradiance solaire. Source : http://data.abuledu.org/URI/5218facb-spectre-d-irradiance-solaire

Spectre d'irradiance solaire

Le Soleil émet un rayonnement électromagnétique dans lequel on trouve notamment les rayons cosmiques, gamma, X, la lumière visible, l’infrarouge, les micro-ondes et les ondes radios en fonction de la fréquence d’émission. Tous ces types de rayonnement électromagnétique émettent de l’énergie. Le niveau d’irradiance (le flux énergétique) arrivant à la surface de la Terre dépend de la longueur d’onde du rayonnement solaire.

Spectre des ondes électromagnétiques. Source : http://data.abuledu.org/URI/50a94947-spectre-des-ondes-electromagnetiques

Spectre des ondes électromagnétiques

Classification des ondes électromagnétiques en fonction de leur longueur d'onde, de leur fréquence ou de l'énergie des photons : Un spectre électromagnétique est la décomposition d'un rayonnement électromagnétique en fonction de sa longueur d'onde, ou, de manière équivalente, de sa fréquence (via l'équation de propagation) ou de l'énergie de ses photons.

Tour CN à Toronto. Source : http://data.abuledu.org/URI/54caab1a-tour-cn-a-toronto

Tour CN à Toronto

La Tour nationale du Canada est une tour de 553,33 mètres située dans le centre de Toronto, au Canada, qui est devenue l'emblème de cette ville. La tour est parfois appelée la tour du Canadien National. La solution pour éviter les perturbations de la propagation des ondes radio par les gratte-ciel fut d'élever une antenne de diffusion au sommet d'une tour haute d'au moins 300 mètres. Elle a ainsi été construite en 1976 par le Canadien National (CN) qui désirait montrer la force de l'industrie canadienne en construisant le plus haut édifice du monde. Originellement prévue comme une antenne pour la radio et la télévision, elle est aujourd'hui une des principales attractions touristiques de Toronto. Source : https://fr.wikipedia.org/wiki/Tour_CN