Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Lumière | Photographie | Lumière -- Propagation | Dessins et plans | Lumière, Théorie ondulatoire de la | Lumière solaire | Dix-neuvième siècle | Gravure | Physique | Art de la lumière | Lumière du jour | Ondes | Savants français | Clip art | Rayonnement solaire | Ombres | Savants allemands | Éclairage artificiel | soleil | Lever de soleil | ...
Schéma de la récupération de la lumière. Source : http://data.abuledu.org/URI/58d1cf8b-schema-de-la-recuperation-de-la-lumiere

Schéma de la récupération de la lumière

Schéma du principe technologique développé par ECHY pour la récupération de la lumière extérieure : Mayanne.

Spectrophotomètre. Source : http://data.abuledu.org/URI/50cdd942-spectrophotometre

Spectrophotomètre

Principe du spectrophotomètre UV-visible monofaisceau. Légende : Source polychromatique, Monochromateur, Diaphragme, Cuve avec échantillon, Cellule photoélectrique, Amplificateur, Afficheur. La spectrophotométrie est une méthode analytique quantitative qui consiste à mesurer l'absorbance ou la densité optique d'une substance chimique donnée, généralement en solution. Plus l'échantillon est concentré, plus il absorbe la lumière dans les limites de proportionnalité énoncées par la loi de Beer-Lambert. La densité optique des échantillons est déterminée par un spectrophotomètre préalablement étalonné sur la longueur d'onde d'absorption de la substance à étudier. Un dispositif monochromateur permet de générer, à partir d’une source de lumière visible ou ultraviolette, une lumière monochromatique, dont la longueur d’onde est choisie par l’utilisateur. La lumière monochromatique incidente d’intensité I_0 ; traverse alors une cuve contenant la solution étudiée, et l’appareil mesure l’intensité I ; de la lumière transmise. La valeur affichée par le spectrophotomètre est l’absorbance à la longueur d’onde étudiée. Le spectrophotomètre peut être utilisé pour mesurer de manière instantanée une absorbance à une longueur d’onde donnée, ou pour produire un spectre d’absorbance (spectrophotomètre à balayage). Dans ce dernier cas, le dispositif monochromateur décrit en un temps court l’ensemble des longueurs d’onde comprises entre deux valeurs choisies par l’opérateur.

Système optique, image réelle. Source : http://data.abuledu.org/URI/50cb751f-systeme-optique-image-reelle

Système optique, image réelle

Schéma système optique stigmatique : Un système optique est dit stigmatique si tout faisceau issu d'un point lumineux donne à la sortie du système un faisceau convergeant en un point, ou semblant provenir d'un point. Autrement dit, si tout rayon émis par un point lumineux donne après passage dans le système optique un rayon dont le support (une droite) est concourant avec tous les autres supports (ceux des autres rayons après passage dans le système optique) en un même point. Ce point est appelé image.

Ultraviolets des lampes fluorescentes. Source : http://data.abuledu.org/URI/50a81a3a-ultraviolets-des-lampes-fluorescentes

Ultraviolets des lampes fluorescentes

Ultraviolets des lampes fluorescentes, une source commune artificielle, des rayons UVA. Le rayonnement de ces lampes déborde dans le haut du spectre de la lumière visible, ce qui donne la couleur violette qu’on observe. Il existe également des lampes UV de laboratoire, qui sont équipées d’un filtre pour supprimer la partie visible de leur spectre.

Une rue de Paris et son habitant - 4. Source : http://data.abuledu.org/URI/514102ef-une-rue-de-paris-et-son-habitant-4

Une rue de Paris et son habitant - 4

Une rue de Paris et son habitant, 1848, par Honoré de Balzac (1799-1850), chapitre 4 : Inconvénient des quais à livres ou les gloires en espalier. (602 mots). Le chemin de l'Institut passe par les bouquinistes du Pont Royal et leurs tentations intellectuelles. Étienne Louis Malus (1775-1812), est un ingénieur, physicien et mathématicien français. Augustin Fresnel (1788-1827), physicien français.

Le spectre électromagnétique. Source : http://data.abuledu.org/URI/50a81854-le-spectre-electromagnetique

Le spectre électromagnétique

Proposition d'illustration du spectre électromagnétique, le spectre visible correspond aux couleurs en bas du schéma. La lumière visible, appelée aussi spectre visible ou spectre optique est la partie du spectre électromagnétique qui est visible pour l'œil humain. Il n'y a aucune limite exacte au spectre visible : l'œil adapté à la lumière possède généralement une sensibilité maximale à la lumière de longueur d'onde d'environ 550 nm, ce qui correspond à une couleur jaune-verte. Généralement, on considère que la réponse de l'œil couvre les longueurs d'ondes de 380 nm à 780 nm bien qu'une gamme de 400 nm à 700 nm soit plus commune. Les fréquences correspondantes vont de 350 à 750 THz (10¹² Hz). Cette gamme de longueur d'onde est importante pour le monde vivant car des longueurs d'ondes plus courtes que 380 nm endommageraient la structure des molécules organiques tandis que celles plus longues que 720 nm seraient absorbées par l'eau, constituant abondant du vivant. Ces extrêmes correspondent respectivement aux couleurs violet et rouge. Cependant, l'œil peut avoir une certaine réponse visuelle dans des gammes de longueurs d'onde encore plus larges. Les longueurs d'onde dans la gamme visible pour l'œil occupent la majeure partie de la fenêtre optique, une gamme des longueurs d'onde qui sont facilement transmises par l'atmosphère de la Terre.

Le spectroscope de Fraunhofer. Source : http://data.abuledu.org/URI/50a7678f-le-spectroscope-de-fraunhofer-

Le spectroscope de Fraunhofer

Photogravure (à partir d'un tableau de Richard Wimmer) de Joseph von Fraunhofer présentant son spectroscope. Source : "Essays in astronomy" - D. Appleton & company, 1900 (LCCN 00004435).

Lentille de Fresnel équipant les phares. Source : http://data.abuledu.org/URI/50a8efcc-lentille-de-fresnel-equipant-les-phares

Lentille de Fresnel équipant les phares

Lentille à échelons ou lentille de Fresnel. Grande optique de premier ordre de feu fixe à éclats réguliers ; Anonyme : 1870, bronze et cristal ; H. 254 x Diamètre 198 cm ; Poids 1500kg environ ; Exposé à Paris, palais de Chaillot ; Musée national de la Marine. Dans le domaine de l’optique appliquée, Fresnel invente la lentille à échelon (dite Lentille de Fresnel) utilisée pour accroître le pouvoir de l’éclairage des phares. Elle est encore utilisée dans les phares maritimes, mais aussi dans les phares automobiles et les projecteurs de cinéma.

Lettre de Newton sur la vision en 1682. Source : http://data.abuledu.org/URI/50a595d2-lettre-de-newton-sur-la-vision-en-1682

Lettre de Newton sur la vision en 1682

Lettre en anglais d'Isaac Newton au Dr. William Briggs, chirurgien ophtalmologiste (20 juin 1682) au sujet de son ouvrage "Une nouvelle théorie de la vision" (A New Theory of Vision) : British Museum Add. Ms. 4327 f. 100. Publiée en facsimile dans le "Dictionnaire encyclopédique" de Quillet, Paris, 1953. Avant Isaac Newton, on pensait que le prisme ajoutait des couleurs au faisceau de lumière blanche. Newton place alors un deuxième prisme de telle manière qu'il ne soit atteint que par une seule couleur et découvre que la couleur reste inchangée. Il en conclut que les prismes permettent de disperser les couleurs. Il utilise ensuite un deuxième prisme et réussit à recomposer un faisceau blanc à partir de l'arc-en-ciel généré par le premier prisme : la démonstration était faite que les couleurs ne sont pas le résultat d'une action du prisme sur la lumière blanche, mais bien que c'est la lumière blanche qui est composée de plusieurs couleurs.

Lithophanie de Wedgwood. Source : http://data.abuledu.org/URI/5230bee5-lithophanie-de-wedgwood

Lithophanie de Wedgwood

Lithophanie de Wedgwood représentant la danse des trois Heures, filles de Zeus (allégories des saisons). Étymologie : du grec lithos, « pierre » et phanes et phaneia, de phainein « paraître », plaque de biscuit de porcelaine non émaillée et non vitrifiée ou d'albâtre, incisée et gravée de sorte à ce qu’elle permette de faire apparaître une image par translucidité devant une source de lumière, plus l’épaisseur de la plaque étant fine, plus la translucidité étant marquée. Par le mot Heures (en latin Horae et en grec ancien Ὧραι / Hōrai), les Grecs, primitivement, désignèrent, non pas les divisions du jour, mais celles de l'année. Les Heures étaient filles de Zeus et de Thémis. Hésiode en compte trois : Eunomie, Dicé et Eiréné, c'est-à-dire le Bon Ordre ou la Législation, la Justice et la Paix, noms indiquant leur rôle moral. Homère les nomme les portières du ciel, et leur confie le soin d'ouvrir et de fermer les portes éternelles de l'Olympe. Elles sont aussi les régulatrices de la vie humaine. La mythologie grecque ne reconnut donc d'abord que trois Heures ou trois Saisons : le Printemps, l’Été et l'Hiver.

Lumière. Source : http://data.abuledu.org/URI/5039416e-lumiere

Lumière

Photo d'une forte source de lumière dans le noir.

Lumière du jour le 2 avril 2005. Source : http://data.abuledu.org/URI/50dd95ed-lumiere-du-jour-le-2-avril-2005

Lumière du jour le 2 avril 2005

Capture d'écran du logiciel libre de KDE "kworldclock" (GPL) : lumière du jour sur terre le 2 avril 2005, aux environs de 13h (UTC = Temps Universel Coordonné). La lumière du jour correspond à toutes les formes de lumières provenant du soleil, directe et indirecte (éclairage direct, rayonnement diffus du ciel). La lumière du jour est présente dès que le soleil s’élève au dessus de l'horizon. (Cela est vrai pour plus de 50% de la Terre). Toutefois, l'éclairage extérieur peut varier de 120.000 lux à la lumière directe du soleil à moins de 1 lux lors de cas exceptionnels tels que les éclipses solaire ou encore la présence de poussières ou de cendres volcaniques dans l'atmosphère.

Lumière du soleil. Source : http://data.abuledu.org/URI/50394279-lumiere-du-soleil

Lumière du soleil

Photo du soleil vu de la terre.

Lumière passant à travers des fenêtres. Source : http://data.abuledu.org/URI/503941eb-lumiere-passant-a-travers-des-fenetres

Lumière passant à travers des fenêtres

Photo prise dans la salle des pas perdus à la gare de Chicago en 1943.

Lumières de nuit émises sur Terre. Source : http://data.abuledu.org/URI/50db1463-terre-lumieres-de-nuit-jpg

Lumières de nuit émises sur Terre

Lumières de nuit émises par la Terre, Image satellitale composite montrant l'émission nocturne de lumière vers l'espace, essentiellement concentrée dans l'hémisphère nord dans les pays les plus industrialisés ; en Amérique d'une part, en Europe de l'Ouest et dans l'est de la chine et au Japon. L'Inde - où une politique d'éclairage initiée par les Anglais a été poursuivie après l'indépendance - se démarque également. Il s'agit d'une superposition de photographies prises de nuit et par temps clair ; les limites des continents sont produites par l'ajout en couleurs sombres, des photographies équivalentes diurnes. Image composite par la NASA et le NOAA.

Lumières du palais présidentiel en Inde. Source : http://data.abuledu.org/URI/5039424a-lumieres-du-palais-presidentiel-en-inde

Lumières du palais présidentiel en Inde

Photo de nuit du palais présidentiel Indien.

Matin. Source : http://data.abuledu.org/URI/5026d1b4-matin
Mesure de la vitesse de la lumière par Foucault. Source : http://data.abuledu.org/URI/50aa9fd1-mesure-de-la-vitesse-de-la-lumiere-par-foucault

Mesure de la vitesse de la lumière par Foucault

Appareillage utilisé par Foucault avec miroir tournant pour mesurer la vitesse de la lumière : en bas à gauche, la lumière est réfléchie par un miroir tournant (à gauche) en direction d'un miroir fixe (en haut) ; à droite, la lumière réfléchie en provenance du miroir stationnaire rebondit sur le miroir tournant qui a avancé d'un angle θ pendant le déplacement de la lumière. Le télescope situé à un angle 2θ de la source récupère le rayon réfléchi par le miroir tournant. Vers 1848, Fizeau et Foucault se lancent dans la mise au point d'expériences visant à mesure la vitesse de la lumière sur Terre, et à comparer la vitesse de la lumière dans l'air et dans l'eau.

Mesure de la vitesse de la lumière, par un miroir tournant. Source : http://data.abuledu.org/URI/50a790ef-mesure-de-la-vitesse-de-la-lumiere-par-un-miroir-tournant

Mesure de la vitesse de la lumière, par un miroir tournant

Schéma de l'expérience du miroir tournant pour la détermination de la vitesse de la lumière (Léon Foucault et Hippolyte Fizeau) : Méthode du miroir tournant, fabriqué par Louis Breguet. Le faisceau émis par la source ⊗ est réfléchi par un miroir tournant à grande vitesse, qui l'envoie sur un télescope fixe à distance S, ce qui donne une brève impulsion au moment où le miroir tournant est orienté dans la bonne direction. Cette impulsion réfléchie va trouver le miroir tournant décalé d'un angle α/2, et va donc se réfléchir à un angle α de la source. La mesure de la distance X ~ α P fournit la vitesse de la lumière connaissant la vitesse de rotation du miroir, et les diverses distances. En 1850, il mesure la vitesse de l'électricité avec E. Gounelle.

Métaphore du cylindre. Source : http://data.abuledu.org/URI/50a59cb2-metaphore-du-cylindre

Métaphore du cylindre

Illustration de la dualité onde/corpuscule. Métaphore du cylindre : objet ayant à la fois les propriétés d'un cercle et d'un rectangle. La métaphore du cylindre est l'exemple d'un objet ayant des propriétés apparemment inconciliables. Il serait à première vue déroutant d'affirmer qu'un objet a à la fois les propriétés d'un cercle et d'un rectangle : sur un plan, un objet est soit un cercle, soit un rectangle. Mais si l'on considère un cylindre : une projection dans l'axe du cylindre donne un cercle, et une projection perpendiculairement à cet axe donne un rectangle. De la même manière, « onde » et « particule » sont des manières de voir les choses et non les choses en elles-mêmes.

Minkowski, le trajet d'un photon. Source : http://data.abuledu.org/URI/50ad7bd4-minkowski-le-trajet-d-un-photon

Minkowski, le trajet d'un photon

Référentiel inertiel de Minkowski : Ligne d'univers du photon. En jaune le trajet d'un photon x = ct, avec c = vitesse de la lumière. Le diagramme de Minkowski est un diagramme d'espace-temps développé en 1908 par Hermann Minkowski, qui fournit une représentation des propriétés de l'espace-temps défini par la théorie de la relativité restreinte. Il permet une compréhension qualitative et intuitive de phénomènes comme la dilatation du temps, la contraction des longueurs ou encore la notion de simultanéité, sans utiliser d'équations mathématiques. Pour la lisibilité du diagramme, une seule dimension spatiale est représentée. Contrairement aux diagrammes distance/temps usuels, la coordonnée spatiale est en abscisse et le temps en ordonnée. Les objets décrits par ce diagramme peuvent être pensés comme se déplaçant du bas vers le haut à mesure que le temps passe. La trajectoire d'un objet dans ce diagramme est appelée ligne d'univers. Une particule immobile aura une ligne d'univers verticale. Chaque point du diagramme représente une certaine position dans l'espace et le temps. Cette position est appelée un événement, indépendamment du fait qu'il se passe réellement quelque chose en ce point ou non. Pour faciliter l'utilisation du diagramme, l'axe des ordonnées représente une quantité "ct" qui est le temps multiplié par la vitesse de la lumière "c". Cette quantité est assimilable également à une distance. De cette manière, la ligne d'univers du photon est une droite de pente 45°, l'échelle des deux axes étant identique dans un diagramme de Minkowski.

Minkowski, messages vers le passé. Source : http://data.abuledu.org/URI/50ad8096-minkowski-messages-vers-le-passe

Minkowski, messages vers le passé

Émission d'un message vers le passé, à une vitesse supraluminique, de S à M' via O'. Description de la contradiction à laquelle on aboutit quand on transmet des signaux plus vite que la lumière (émission de signaux dans son propre passé). Adapté de David Bohm, "The Special Theory of Relativity" p. 121. Le diagramme de Minkowski permet de mettre en évidence les contradictions et paradoxes qui interviennent à partir du moment où on postule qu'une information peut se propager à une vitesse supérieure à celle de la lumière. Notamment, il serait possible dans ces conditions de transmettre une information dans son propre passé.

Nuit-jour-soleil. Source : http://data.abuledu.org/URI/5026e48b-nuit-jour-soleil
Onde lumineuse surfée par une fourmi. Source : http://data.abuledu.org/URI/50a8f34a-onde-lumineuse-surfee-par-une-fourmi

Onde lumineuse surfée par une fourmi

Onde lumineuse surfée par une fourmi.

Opacité électromagnétique de l'atmosphère. Source : http://data.abuledu.org/URI/50be41a2-opacite-electromagnetique-de-l-atmosphere

Opacité électromagnétique de l'atmosphère

Opacité électromagnétique (ou transmittance) de l'atmosphère en fonction de la longueur d'onde (jusqu'à 1km). L’absorption optique est une autre propriété importante de l'atmosphère. Différentes molécules absorbent différentes longueurs d'onde de radiations. Par exemple, l'O2 et l'O3 absorbent presque toutes les longueurs d'onde inférieures à 300 nanomètres. L'eau (H2O) absorbe la plupart des longueurs d'onde au-dessus de 700 nm, mais cela dépend de la quantité de vapeur d'eau dans l'atmosphère. Quand une molécule absorbe un photon, cela accroît son énergie. Quand les spectres d'absorption des gaz de l'atmosphère sont combinés, il reste des « fenêtres » de faible opacité, autorisant le passage de certaines bandes lumineuses. La fenêtre optique va d'environ 300 nm (ultraviolet-C) jusqu'aux longueurs d'onde que les humains peuvent voir, la lumière visible (communément appelé lumière), à environ 400–700 nm et continue jusqu'aux infrarouges vers environ 1100 nm. Il y a aussi des fenêtres atmosphériques et radios qui transmettent certaines ondes infrarouges et radio sur des longueurs d'onde plus importantes. Par exemple, la fenêtre radio s'étend sur des longueurs d'onde allant de un centimètre à environ onze mètres. Le graphe ci-dessus représente 1-T (exprimé en %) (T:transmittance)

Orthogonalité dans l'espace de Minkowski. Source : http://data.abuledu.org/URI/50ad8268-orthogonalite-dans-l-espace-de-minkowski

Orthogonalité dans l'espace de Minkowski

Orthogonalité dans l'espace de Minkowski pour une vitesse v=0. Dans la représentation qu'est un diagramme de Minkowski, l'orthogonalité minkowskienne possède une propriété que ne possède pas l'orthogonalité euclidienne : l'angle entre un vecteur et son orthogonal varie en fonction de l'inclinaison du vecteur (en géométrie euclidienne, l'angle est fixe et égal à 90°). Quand le vecteur est de « genre lumière », ce vecteur est alors son propre orthogonal : la ligne d'univers est contenue dans le plan de simultanéité. Pour un photon, le temps ne s'écoule pas quand il progresse sur sa ligne d'univers.

Paradoxe des Jumeaux. Source : http://data.abuledu.org/URI/50ad8368-paradoxe-des-jumeaux

Paradoxe des Jumeaux

Paradoxe des jumeaux dans un espace de Minkowski.

Passage à l'heure d'hiver. Source : http://data.abuledu.org/URI/50dab32a-passage-a-l-heure-d-hiver

Passage à l'heure d'hiver

Passage de l'heure d'été à l'heure normale, l'horloge est retardée d'une heure, le dernier dimanche du mois d'octobre : l’heure d’hiver correspond, dans les pays pratiquant le changement d’heure, à l’heure légale appliquée dans les mois correspondant à l’hiver dans l’hémisphère nord. Le régime de l’heure d’hiver consiste à repasser à l’heure qui avait cours avant le passage à l’heure d’été, en retranchant soixante minutes à l’heure légale au début de la période hivernale. Pour l’Europe (sauf Islande), la période s’étend du dernier dimanche d’octobre au dernier dimanche de mars. Pour l’Amérique du Nord, cette période hivernale débute dans la nuit du dernier dimanche d’octobre tandis que le retour à l’heure d’été se fait le premier dimanche d’avril. Depuis 2007, les États-Unis et le Canada effectuent le passage à l’heure d’été le deuxième dimanche de mars et le retour à l’heure d’hiver le premier dimanche de novembre, à 2 heures HE (heure de l'Est), sauf Terre-Neuve à 1 heure du matin.

Pêche au clair de lune. Source : http://data.abuledu.org/URI/52cddeba-peche-au-clair-de-lune

Pêche au clair de lune

Pêche au clair de lune au XVIIème siècle.

Pinceau dans un verre d'eau. Source : http://data.abuledu.org/URI/53a9da24-pinceau-dans-un-verre-d-eau

Pinceau dans un verre d'eau

Réflexion totale de la lumière sur la partie inférieure d'un dioptre eau-air.

Portrait d'Hippolyte Fizeau. Source : http://data.abuledu.org/URI/50a78f29-portrait-d-hippolyte-fizeau

Portrait d'Hippolyte Fizeau

Armand Hippolyte Louis Fizeau (1819-1896), est un physicien, astronome français qui travailla notamment sur la lumière. En 1845, il réalise une première photographie nette du Soleil. En 1848, il découvre le décalage de fréquence d'une onde lorsque la source et le récepteur sont en mouvement l'un par rapport à l'autre (effet Doppler-Fizeau). C'est ainsi qu'il prédit le décalage vers le rouge des ondes lumineuses.

Portrait de Buys-Ballot. Source : http://data.abuledu.org/URI/50a76c93-portrait-de-buys-ballot

Portrait de Buys-Ballot

C.H.D. Buys Ballot (1817-1890), savant néermandais surtout connu pour ses recherches en météorologie, en particulier sur l'explication du sens de la circulation autour des dépressions et des anticyclones. Ses recherches ne se limitent pas à la météorologie. En 1845, Buys Ballot engage un groupe de musiciens pour jouer une note bien précise sur le train Utrecht-Amsterdam. Il enregistre ensuite la différence entre cette fréquence et celle perçue le long de la ligne par un observateur pour confirmer les équations de Christian Doppler concernant la propagation des ondes sonores (Effet Doppler-Fizeau).

Portrait de Doppler. Source : http://data.abuledu.org/URI/50a76a34-portrait-de-doppler

Portrait de Doppler

Portrait de Christian Doppler (1803-1853), physicien autrichien. publication la plus célèbre a été présentée le 25 mai 1842 à l'Académie royale des sciences de Bohème et a pour titre "Sur la lumière colorée des étoiles doubles et d'autres étoiles du ciel", utilisant l'effet Doppler. En 1846, Doppler publie une correction de son travail initial où il tient compte des vitesses relatives de la source de lumière et de l'observateur. En 1850, il fonde l'Institut de Physique de l'Université de Vienne dont il est seul professeur et le premier directeur.

Portrait de Fraunhofer. Source : http://data.abuledu.org/URI/50a76698-portrait-de-fraunhofer

Portrait de Fraunhofer

Portrait de Joseph von Fraunhofer, opticien et physicien allemand (1787-1826). Il fut l'inventeur du spectroscope avec lequel il repéra les raies du spectre solaire. il mit au point de nouvelles machines à polir les miroirs et de nouveaux types de verres optiques (le verre flint achromatique), qui apportèrent une amélioration décisive à la qualité des lentilles. Dans son institut d’optique, Fraunhofer ne se contentait pas de polir des lentilles ; il fabriquait entièrement des lunettes astronomiques, avec leur monture. On doit d'ailleurs à Fraunhofer les montures dites « équatoriales ». Aujourd'hui, la plupart des instruments d'amateur sont équipés de ce type de monture.

Portrait de Fresnel. Source : http://data.abuledu.org/URI/524ee473-portrait-de-fresnel

Portrait de Fresnel

Le tour de la France par deux enfants, par George Bruno, pseudonyme d'Augustine Fouillée (née Tuillerie), 1877, p.250 : manuel scolaire, édition de 1904. FRESNEL, né à Broglie (Eure) en 1788, mort en 1827 ; physicien français. Fondateur de l’optique moderne, il proposa une explication de tous les phénomènes optiques dans le cadre de la théorie ondulatoire de la lumière.

Portrait de Joseph Fourier. Source : http://data.abuledu.org/URI/50a812c8-portrait-de-joseph-fourier

Portrait de Joseph Fourier

Portrait de Joseph Fourier (1768-1830), mathématicien et physicien français, connu pour ses travaux sur la décomposition de fonctions périodiques en séries trigonométriques convergentes appelées "séries de Fourier" et leur application au problème de la propagation de la chaleur. Il intègre l'École normale supérieure à 26 ans, où il a entre autres comme professeurs Joseph-Louis Lagrange, Gaspard Monge et Pierre-Simon de Laplace, auquel il succède à la chaire à Polytechnique en 1797. Il participe à la Révolution, manquant de peu de se faire guillotiner durant la Terreur, sauvé de justesse par la chute de Robespierre. En 1798, il est désigné pour faire partie de la campagne d'Égypte et quitte Toulon en mai. Il occupe un haut poste de diplomate et devient secrétaire de l'Institut d'Égypte dont il anime la vie scientifique. À son retour en France en 1802, Napoléon le nomme préfet de l'Isère le 12 février. Il crée en 1810 l'Université Royale de Grenoble dont il devient le recteur, et y remarque Jean-François Champollion.

Portrait des frères Lumière. Source : http://data.abuledu.org/URI/559f6772-portrait-des-freres-lumiere

Portrait des frères Lumière

Portrait des deux fils d'Antoine Lumière (1840-1911). - Auguste (1862-1954) et Louis (1864-1948) Lumière sont les inventeurs du cinématographe (1895) et de l'autochrome (1903). Source : notice data-bnf

Première d'Harry Potter 2007 à Tokyo. Source : http://data.abuledu.org/URI/52cde13f-harry-potter-2007-tokyo-premier-searchlights-1-jpg

Première d'Harry Potter 2007 à Tokyo

Faisceau de canons à lumière ; l'évènementiel justifie parfois une surenchère de technologie et de consommation d'énergie pour se rendre visible dans la nuit, et non pour des besoins d'éclairage : Tokyo Juin 2007, pour la première de Harry Potter et l'Ordre du Phénix.

Principe de fonctionnement d'un laser. Source : http://data.abuledu.org/URI/50b3d2f0-principe-de-fonctionnement-d-un-laser

Principe de fonctionnement d'un laser

Schéma expliquant de principe de fonctionnement d'un laser : milieu amplificateur, cavité, pompage, faisceau. Un laser est fondamentalement un amplificateur de lumière (fonctionnant grâce à l'émission stimulée) dont la sortie est branchée sur l'entrée. On peut comparer ce processus à l'effet Larsen, qui se produit lorsqu'un amplificateur (la chaîne HiFi) a sa sortie (le haut-parleur) « branchée » sur l'entrée (le micro). Alors le moindre bruit capté par le micro est amplifié, émis par le haut-parleur, capté par le micro, réamplifié, et ainsi de suite... Bien sûr l'intensité du son ne croît pas indéfiniment (tout comme l'intensité de la lumière dans un laser) : l'amplificateur sature (il existe un volume maximum du son pouvant être produit). La fréquence du son émise par ce procédé est particulière et dépend de l'amplificateur ainsi que de la distance entre le haut-parleur et le micro : il en est de même pour un laser. Le rayonnement sortant de cet amplificateur est rebouclé sur son entrée au moyen de miroirs, qui constituent une « cavité » (où la lumière est piégée). Bien sûr, un dispositif (comme un miroir partiellement réfléchissant) permet d'extraire de la lumière de ce système, pour obtenir le rayonnement laser utilisable. Ainsi un rayonnement initialement présent dans le système va être amplifié une première fois, puis rebouclé, puis réamplifié, etc. On peut ainsi construire un rayonnement extrêmement important, même à partir d'un rayonnement extrêmement faible (comme un seul photon émis spontanément dans la cavité).

Projecteur. Source : http://data.abuledu.org/URI/51828756-projecteur

Projecteur

Un projecteur est un appareil qui combine une ou plusieurs source(s) lumineuse(s) avec un dispositif optique destiné à projeter un puissant faisceau de lumière dans une direction particulière.

Randonnée à l'aube. Source : http://data.abuledu.org/URI/50dd7657-randonnee-a-l-aube

Randonnée à l'aube

Randonnée à l'aube dans le comté du wiltshire, juste avant le "lever du soleil", photo prise après une journée et une nuit de pluie.

Réfraction. Source : http://data.abuledu.org/URI/50a59f8c-refraction

Réfraction

Principe de réfraction d'onde selon Huygens-Fresnel (Augustin Jean Fresnel, né le 10 mai 1788 à Broglie et mort le 14 juillet 1827 à Ville-d'Avray, est un physicien français fondateur de l’optique moderne ; il proposa une explication de tous les phénomènes optiques dans le cadre de la théorie ondulatoire de la lumière). Le principe de Huygens-Fresnel est un principe utilisé en optique : il permet entre autres de calculer l'intensité dans les phénomènes de diffraction et d'interférence. Il consiste à considérer chaque point de l'espace indépendamment. Si un point M reçoit une onde d'amplitude E(M, t), alors on peut considérer qu'il réémet une onde sphérique de même fréquence, même amplitude et même phase. Au lieu de considérer que l'onde progresse de manière continue, on décompose sa progression en imaginant qu'elle progresse de proche en proche. Formulé par Fresnel en 1815, ce principe reprend la base du modèle ondulatoire développé par Huygens (1690). Soit une surface ∑ et une source lumineuse S. On découpe ∑ en surfaces élémentaires d∑ centrées autour d'un point P. Chaque point P de ∑ atteint par la lumière émise par la source S se comporte comme une source secondaire fictive émettant une ondelette sphérique.

Soleil. Source : http://data.abuledu.org/URI/50210355-soleil

Soleil

Photo du soleil

Soleil. Source : http://data.abuledu.org/URI/5027b142-soleil
Thomas Young, pionnier de l'optique ondulatoire. Source : http://data.abuledu.org/URI/50a599b3-thomas-young-pionnier-de-l-optique-ondulatoire

Thomas Young, pionnier de l'optique ondulatoire

Thomas Young (13 juin 1773-10 mai 1829), est un physicien, médecin et égyptologue britannique. Son excellence dans de nombreux domaines non reliés fait qu'il est considéré comme un polymathe, au même titre par exemple que Léonard de Vinci, Gottfried Leibniz ou Francis Bacon. Son savoir était si vaste qu'il fut connu sous le nom de phénomène Young. Il exerça la médecine toute sa vie, mais il est surtout connu pour sa définition du "module de Young" en science des matériaux et pour son expérience des "fentes de Young" en optique, dans laquelle il mit en évidence et interpréta le phénomène d’interférences lumineuses.

Vidéo de Noël à Madrid. Source : http://data.abuledu.org/URI/54919e03-video-de-noel-a-madrid

Vidéo de Noël à Madrid

Vidéo de Noël sur le Palacio de Comunicaciones à Madrid, le 23 décembre 2012.