Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.
Représentation graphique d'une gamme pythagoricienne : il est possible de représenter une gamme pythagoricienne particulière en mettant les apotomes et les limmas les uns à la suite des autres selon les intervalles obtenus, le limma étant plus court que l'apotome d'un comma. Les deux demi-tons, qui sont identiques dans la gamme tempérée, sont nommés dans la gamme pythagoricienne : apotome, pour l'intervalle formé par une note et sa version altérée ; limma, pour l'intervalle formé par une note altérée et la note voisine ne portant pas le même nom. Ces intervalles sont disposés ainsi : do - apotome - do♯ - limma - ré, pour les quintes ascendantes ; do - limma - ré♭ - apotome - ré, pour les quintes descendantes. Dans la gamme pythagoricienne, les notes bémolisées sont inférieures d'un comma pythagoricien à leurs notes conjointes diésées, on en déduit l'ordre suivant : do - ré♭ - do♯ - ré. Source : http://fr.wikipedia.org/wiki/Accord_pythagoricien
512 - 1024 - Fichier Original - Source + Métadonnées SCOLOMFR